Problem 1

Prove that for a σ-field \mathcal{F}, if $A_{1}, A_{2}, \cdots \in \mathcal{F}$, then $\cap_{i=1}^{\infty} A_{i} \in \mathcal{F}$.

Solution:

Proof. By the properties of σ-field, $A_{1}^{c}, A_{2}^{c}, \cdots \in \mathcal{F}$, and

$$
\cup_{i=1}^{\infty} A_{i}^{c} \in \mathcal{F},
$$

then by the first property,

$$
\left(\cup_{i=1}^{\infty} A_{i}^{c}\right)^{c}=\cap_{i=1}^{\infty} A_{i} \in \mathcal{F} .
$$

Problem 2

Prove monotonicity and subadditivity of measure μ on σ-field.

Solution:

Proof. - If $A \subseteq B$, then $A \cup\left(B \cap A^{c}\right)=B$, and $A \cap\left(B \cap A^{c}\right)=\varnothing$. Therefore,

$$
\mu(B)=\mu(A)+\mu\left(\left(B \cap A^{c}\right)\right) \geq \mu(A)
$$

- If $A \subseteq \cup_{i=1}^{\infty} A_{i}$, consider $A_{i}^{\prime}=A \cap A_{i}$, and let

$$
B_{1}=A_{1}^{\prime}, \quad B_{i}=A_{i}^{\prime} \cap\left(\cup_{k=1}^{i-1} A_{k}^{\prime}\right)^{c}
$$

then $B_{i}, i \geq 1$ are disjoint, $B_{i} \subseteq A_{i}^{\prime} \subseteq A_{i}$, and $\cup_{i=1}^{\infty} B_{i}=\cup_{i=1}^{\infty} A_{i}^{\prime}=A$. Therefore,

$$
\mu(A)=\mu\left(\cup_{i=1}^{\infty} B_{i}\right)=\sum_{i=1}^{\infty} \mu\left(B_{i}\right) \leq \sum_{i=1}^{\infty} \mu\left(A_{i}\right) .
$$

Problem 3

(Monty Hall problem) Suppose you're on a game show, and you're given the choice of three doors: Behind one door is a car; behind the others, goats. You pick a door, say No. 1, and the host, who knows what's behind the doors, opens another door, say No. 3, which has a goat. He then says to you, "Do you want to pick door No. 2?" Is it to your advantage to switch your choice?
(Assumptions: the host will not open the door we picked and the host will only open the door which has a goat.)

Solution:

Proof. Denote the event "The car is behind Door i " as D_{i}, and denote the event "The host opens Door i " as O_{i}, then

$$
\mathbb{P}\left(D_{i}\right)=\frac{1}{3}
$$

and

$$
\mathbb{P}\left(O_{3} \mid D_{1}\right)=\frac{1}{2}, \quad \mathbb{P}\left(O_{3} \mid D_{2}\right)=1, \quad \mathbb{P}\left(O_{3} \mid D_{3}\right)=0
$$

Therefore,

$$
\begin{aligned}
\mathbb{P}\left(D_{2} \mid O_{3}\right) & =\frac{\mathbb{P}\left(O_{3} \mid D_{2}\right) \mathbb{P}\left(D_{2}\right)}{\mathbb{P}\left(O_{3} \mid D_{1}\right) \mathbb{P}\left(D_{1}\right)+\mathbb{P}\left(O_{3} \mid D_{2}\right) \mathbb{P}\left(D_{2}\right)+\mathbb{P}\left(O_{3} \mid D_{3}\right) \mathbb{P}\left(D_{3}\right)} \\
& =\frac{\frac{1}{3}}{\frac{1}{6}+\frac{1}{3}+0}=\frac{2}{3}>\mathbb{P}\left(D_{1} \mid O_{3}\right)
\end{aligned}
$$

which means we should switch.

