Problem 1

Give an example where the events are pairwise independent but not mutually independent.

Solution:

Proof. Omitted.

Problem 2

Verify that the measure $\mu(\cdot)$ induced by $P(\cdot)$ is a probability measure on \mathcal{R}.

Solution:

Proof. - $\mu(\varnothing)=\mathbb{P}(X \in \varnothing)=\mathbb{P}(\varnothing)=0$;

- $\mu(\mathbb{R})=\mathbb{P}(X \in \mathbb{R})=\mathbb{P}(\Omega)=1$;
- If $A_{1}, A_{2}, \cdots \in \mathcal{R}$ are disjoint, then $X^{-1}\left(A_{1}\right), X^{-1}\left(A_{2}\right), \cdots \in \mathcal{F}$ are also disjoint,

$$
\mu\left(\cup_{i=1}^{\infty} A_{i}\right)=\mathbb{P}\left(X \in \cup_{i=1}^{\infty} A_{i}\right)=\mathbb{P}\left(\cup_{i=1}^{\infty} X^{-1}\left(A_{i}\right)\right)=\sum_{i=1}^{\infty} \mathbb{P}\left(X^{-1}\left(A_{i}\right)\right)=\sum_{i=1}^{\infty} \mu\left(A_{i}\right)
$$

Problem 3

Prove properties 3-5 of CDF $F(\cdot)$.

Solution:

Proof. - Right continuity: using continuity from above. Reference: A proof from Proof Wiki.

- Similar to the proof of right continuity, for this we use continuity from below, the proof is completed by observing that for any increasing $\left\{x_{n}\right\}_{n=1}^{\infty}$ with $x_{n}<x$ and $x_{n} \rightarrow x$, the limit of $\left(-\infty, x_{n}\right]$ is

$$
\cup_{n=1}^{\infty}\left(-\infty, x_{n}\right]=(-\infty, x)
$$

- By the aforementioned 2 results,

$$
\mathbb{P}(X=x)=\mathbb{P}(X \leq x)-\mathbb{P}(X<x)=F(x)-F\left(x^{-}\right)
$$

Problem 4

Bob and Alice are playing a game. They alternatively keep tossing a fair coin and the first one to get a H wins. Does the person who plays first have a better chance at winning?

Solution:

Proof. Without loss of generality, suppose Alice plays first. Then denote A as the event "Alice wins", we have

$$
\mathbb{P}(A)=\mathbb{P}(\{H\},\{T T H\},\{T T T T H\}, \cdots)=\sum_{i=1}^{\infty}\left(\frac{1}{2}\right)^{2 i-1}=\frac{2}{3}>1-\mathbb{P}(A)
$$

so the person who plays first have a better chance at winning.

