Problem 1

Show that the probability density function of normal distribution $N\left(\mu, \sigma^{2}\right)$ integrates to 1 .
(Hint: consider two normal random variables X, Y)

Solution:

Proof. Without loss of generality, let $\mu=0, \sigma=1$.
Consider two random variables $X, Y \sim \mathcal{N}(0,1)$, then

$$
f_{X}(x)=\frac{1}{\sqrt{2 \pi}} \exp \left(-\frac{x^{2}}{2}\right), \quad f_{Y}(y)=\frac{1}{\sqrt{2 \pi}} \exp \left(-\frac{y^{2}}{2}\right)
$$

Denote

$$
A:=\int_{-\infty}^{\infty} f_{X}(x) d x
$$

then our goal is to show $A=1$.
Note that

$$
\begin{aligned}
A^{2} & =\int_{-\infty}^{\infty} f_{X}(x) d x \cdot \int_{-\infty}^{\infty} f_{Y}(y) d y \\
& =\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f_{X}(x) f_{Y}(y) d x d y \\
& =\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \frac{1}{2 \pi} \exp \left(-\frac{x^{2}+y^{2}}{2}\right) d x d y
\end{aligned}
$$

Let $r=\sqrt{x^{2}+y^{2}}, x=r \cos \theta$, then by change-of-variables in calculus, the Jacobian $|J|=r$, and the integral can be reformulated as

$$
\begin{aligned}
A^{2} & =\int_{0}^{2 \pi} \int_{0}^{\infty} \frac{1}{2 \pi} \exp \left(-\frac{r^{2}}{2}\right) r d r d \theta \\
& =\left(\int_{0}^{2 \pi} d \theta\right) \cdot\left(\int_{0}^{\infty} \frac{1}{2 \pi} \exp \left(-\frac{r^{2}}{2}\right) r d r\right) \\
& =\left.2 \pi \cdot \frac{1}{2 \pi}\left(-\exp \left(-\frac{r^{2}}{2}\right)\right)\right|_{0} ^{\infty}=1
\end{aligned}
$$

Therefore, we have $A=1$ in view of $A \geq 0$.

Problem 2

Prove that for X with density function $f_{X}(x)$, the density function of $Y=X^{2}$ is

$$
f_{Y}(y)=\frac{1}{2 \sqrt{y}}\left(f_{X}(-\sqrt{y})+f_{X}(\sqrt{y})\right), \quad y \geq 0
$$

(Hint: start by considering the CDF)

Solution:

Proof. Observe that

$$
\mathbb{P}\left(X^{2} \leq y\right)=\mathbb{P}(-\sqrt{y} \leq X \leq \sqrt{y})=F_{X}(\sqrt{y})-F_{X}(-\sqrt{y})
$$

then by taking the derivative regarding y on both sides, the result follows.

Problem 3

Suppose X_{1}, \cdots, X_{n} are i.i.d. sample following Uniform[0,1] distribution, find the joint probability density function of $\left(X_{(1)}, X_{(n)}\right)$.
(Hint: start by considering the CDF)

Solution:

Proof.

$$
\begin{aligned}
\mathbb{P}\left(X_{(1)} \leq x, X_{(n)} \leq y\right) & =\mathbb{P}\left(X_{(n)} \leq y\right)-\mathbb{P}\left(X_{(1)}>x, X_{(n)} \leq y\right) \\
& =\prod_{i=1}^{n} \mathbb{P}\left(X_{i} \leq y\right)-\prod_{i=1}^{n} \mathbb{P}\left(x<X_{i} \leq y\right) \\
& =\left(F_{X}(y)\right)^{n}-\left(F_{X}(y)-F_{X}(x)\right)^{n}
\end{aligned}
$$

Taking the derivative regarding x, y on both sides, we have

$$
f_{\left(X_{(1)}, X_{(n)}\right)}(x, y)=n(n-1)\left(F_{X}(y)-F_{X}(x)\right)^{n-2} f_{X}(x) f_{X}(y)
$$

Further plugging in the CDF and PDF of uniform distribution, we have

$$
f_{\left(X_{(1)}, X_{(n)}\right)}(x, y)=n(n-1)(y-x)^{n-2}, \quad 0 \leq x<y \leq 1
$$

