Problem 1

Prove that $\mathbb{E}(X Y)=\mathbb{E}(X) \mathbb{E}(Y)$ when X and Y are independent.
(Hint: simply consider the continuous case, use the independent property of the joint pdf)

Solution:

Proof. Assume both X, Y are continuous random variables and denote the joint PDF as $f_{(X, Y)}(x, y)$, then by independence, $f_{(X, Y)}(x, y)=f_{X}(x) \cdot f_{Y}(y)$

$$
\begin{aligned}
\mathbb{E}(X Y) & =\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x y f_{(X, Y)}(x, y) d x d y \\
& =\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x y f_{X}(x) \cdot f_{Y}(y) d x d y \\
& =\left(\int_{-\infty}^{\infty} x f_{X}(x) d x\right)\left(\int_{-\infty}^{\infty} y f_{Y}(y) d y\right) \\
& =\mathbb{E}(X) \mathbb{E}(Y)
\end{aligned}
$$

Problem 2

For $X \sim$ Uniform (a, b), compute $\mathbb{E}(X)$ and $\operatorname{Var}(X)$.

Solution:

Proof. We have $f_{X}(x)=\frac{1}{b-a}, \quad a<x<b$.

$$
\mathbb{E}(X)=\int_{a}^{b} x \cdot \frac{1}{b-a} d x=\frac{b+a}{2}
$$

and

$$
\mathbb{E}\left(X^{2}\right)=\int_{a}^{b} x^{2} \cdot \frac{1}{b-a} d x=\frac{b^{3}-a^{3}}{3(b-a)}=\frac{b^{2}+a b+a^{2}}{3}
$$

therefore,

$$
\operatorname{Var}(X)=\mathbb{E}\left(X^{2}\right)-(\mathbb{E}(X))^{2}=\frac{(b-a)^{2}}{12}
$$

Problem 3

Determine the MGF of $X \sim \mathcal{N}\left(\mu, \sigma^{2}\right)$.
(Hint: Start by considering the MGF of $Z \sim \mathcal{N}(0,1)$, and then use the transformation $X=\mu+\sigma Z)$

Solution:

Proof. For $Z \sim \mathcal{N}(0,1)$,

$$
\begin{aligned}
M_{Z}(t) & =\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} \exp \left(t x-\frac{x^{2}}{2}\right) \mathrm{d} x \\
& =\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} \exp \left(-\frac{(x-t)^{2}}{2}+\frac{t^{2}}{2}\right) \mathrm{d} x \\
& =e^{\frac{t^{2}}{2}} \int_{-\infty}^{\infty} \mathcal{N}(t, 1) \mathrm{d} x \\
& =e^{\frac{t^{2}}{2}}
\end{aligned}
$$

Then for $X=\mu+\sigma Z \sim \mathcal{N}\left(\mu, \sigma^{2}\right)$,

$$
M_{X}(t)=\mathbb{E}\left(e^{t(\mu+\sigma Z)}\right)=e^{t \mu} \cdot M_{Z}(\sigma t)=e^{\mu t+\frac{\sigma^{2} t^{2}}{2}}
$$

Problem 4

The citizens of Remuera withdraw money from a cash machine according to $X=50,100,200$ with probability $0.3,0.5,0.2$, respectively. The number of customers per day has the distribution $N \sim \operatorname{Poisson}(\lambda=10)$. Let $T_{N}=X_{1}+X 2+\cdots+X_{N}$ be the total amount of money withdrawn in a day, where each X_{i} has the probability above, and X_{i} 's are independent of each other and of N.

- Find $\mathbb{E}\left(T_{N}\right)$,
- Find $\operatorname{Var}\left(T_{N}\right)$.

Solution:

Proof. Conditional on $N=n$, we have $\mathbb{E}\left(T_{N} \mid N=n\right)=\sum_{i=1}^{n} \mathbb{E}\left(X_{i}\right)=105 n$, and $\operatorname{Var}\left(T_{N} \mid N=n\right)=$ $\operatorname{Var}\left(\sum_{i=1}^{n} X_{i}\right)=\sum_{i=1}^{n} \operatorname{Var}\left(X_{i}\right)=2725 n$. Therefore, by law of total expectation and variance,

$$
\mathbb{E}\left(T_{N}\right)=\mathbb{E}\left(\mathbb{E}\left(T_{N} \mid N\right)\right)=\mathbb{E}(105 N)=105 \mathbb{E}(N)=1050
$$

and

$$
\begin{aligned}
\operatorname{Var}\left(T_{N}\right) & =\operatorname{Var}\left(\mathbb{E}\left(T_{N} \mid N\right)\right)+\mathbb{E}\left(\operatorname{Var}\left(T_{N} \mid N\right)\right) \\
& =\operatorname{Var}(105 N)+\mathbb{E}(2725 N) \\
& =105^{2} \operatorname{Var}(N)+2725 \mathbb{E}(N) \\
& =137500 .
\end{aligned}
$$

