Problem 1

Let

$$
f_{X, Y}(x, y)=\left\{\begin{array}{ll}
2 & 0 \leq y \leq x \leq 1 \\
0 & \text { otherwise }
\end{array},\right.
$$

compute $\operatorname{Cov}(X, Y)$.

Solution:

Proof. First compute the marginal density of X and Y by taking the integration, we have

$$
\begin{gathered}
f_{X}(x)=2 x, \quad 0 \leq x \leq 1 \\
f_{Y}(y)=2(1-y), \quad 0 \leq y \leq 1
\end{gathered}
$$

Then $\mathbb{E}(X)=\frac{2}{3}, \mathbb{E}(Y)=\frac{1}{3}$, and

$$
\begin{aligned}
\mathbb{E}(X Y) & =\int_{\mathbb{R}^{2}} x y f_{X, Y}(x, y) d x d y \\
& =\int_{0}^{1}\left(\int_{0}^{x} 2 x y d y\right) d x \\
& =\frac{1}{4}
\end{aligned}
$$

Therefore, $\operatorname{Cov}(X, Y)=\mathbb{E}(X Y)-\mathbb{E}(X) \mathbb{E}(Y)=\frac{1}{36}$.

Problem 2

For $X \sim \mathcal{N}(0,1)$, compute the Chernoff bound.

Solution:

Proof. Based on Problem 3 in Module 5, the MGF of X is

$$
M_{X}(t)=\mathbb{E}\left(e^{t X}\right)=e^{\frac{t^{2}}{2}}
$$

Therefore, for $t \geq 0$, the Chernoff bound is

$$
\mathbb{P}(X \geq a) \leq \inf _{t \geq 0} \frac{M_{X}(t)}{e^{t a}}=\inf _{t \geq 0} e^{\frac{t^{2}}{2}-a t}=e^{-\frac{a^{2}}{2}} \cdot \inf _{t \geq 0} e^{\frac{1}{2}(t-a)^{2}}
$$

Specifically, for $a>0$,

$$
\mathbb{P}(X \geq a) \leq e^{-\frac{a^{2}}{2}}
$$

and by symmetry,

$$
\mathbb{P}(|X| \geq a) \leq 2 e^{-\frac{a^{2}}{2}}
$$

