Problem 1

Prove that on a complete probability space, if $X_{n} \xrightarrow{L^{p}} X$, then $X_{n} \xrightarrow{P} X$.
(Hint: use Markov's inequality)

Solution:

Proof. Consider for $\forall \epsilon>0$,

$$
\mathbb{P}\left(\left|X_{n}-X\right|>\epsilon\right)=\mathbb{P}\left(\left|X_{n}-X\right|^{r}>\epsilon^{r}\right) \leq \frac{\mathbb{E}\left(\left|X_{n}-X\right|^{r}\right)}{\epsilon^{r}} \rightarrow 0, \quad n \rightarrow \infty
$$

Problem 2

Let X_{1}, \cdots, X_{n} be i.i.d. random variables with $\operatorname{Bernoulli}(p)$ distribution, and $X \sim \operatorname{Bernoulli}(p)$ is defined on the same probability space, independent with X_{i} 's. Does X_{n} converge in probability to X ?

Solution:

Proof. No. Consider for $\forall \epsilon \in(0,1)$,

$$
\mathbb{P}\left(\left|X_{n}-X\right|>\epsilon\right)=\mathbb{P}\left(X_{n}=1, X=0\right)+\mathbb{P}\left(X_{n}=0, X=1\right)=2 p(1-p)
$$

which does not converge to 0 .

Problem 3

Give an example where X_{n} converges in distribution to X, but not in probability.

Solution:

Proof. Omitted.

