Problem 1

Prove that on a complete probability space, if $X_{n} \xrightarrow{\text { a.s. }} X, Y_{n} \xrightarrow{\text { a.s. }} Y$, then $X_{n}+Y_{n} \xrightarrow{\text { a.s. }} X+Y$.

Solution:

Proof. Denote $\Omega_{1}=\left\{\omega: \lim _{n \rightarrow \infty} X_{n}(\omega) \neq X(\omega)\right\}$, and $\Omega_{2}=\left\{\omega: \lim _{n \rightarrow \infty} Y_{n}(\omega) \neq Y(\omega)\right\}$, then by almost sure convergence, we have

$$
\mathbb{P}\left(\Omega_{1}\right)=\mathbb{P}\left(\Omega_{2}\right)=0
$$

Considering $\omega \in \Omega_{1}^{c} \cap \Omega_{2}^{c}$, we must have $\lim _{n \rightarrow \infty} X_{n}(\omega)+Y_{n}(\omega)=X(\omega)+Y(\omega)$, so

$$
\begin{aligned}
\mathbb{P}\left(\left\{\omega: \lim _{n \rightarrow \infty} X_{n}(\omega)+Y_{n}(\omega) \neq X(\omega)+Y(\omega)\right\}\right) & =1-\mathbb{P}\left(\left\{\omega: \lim _{n \rightarrow \infty} X_{n}(\omega)+Y_{n}(\omega)=X(\omega)+Y(\omega)\right\}\right) \\
& \leq 1-\mathbb{P}\left(\Omega_{1}^{c} \cap \Omega_{2}^{c}\right) \\
& =\mathbb{P}\left(\Omega_{1} \cup \Omega_{2}\right) \\
& \leq \mathbb{P}\left(\Omega_{1}\right)+\mathbb{P}\left(\Omega_{2}\right) \\
& =0
\end{aligned}
$$

Thus, $\mathbb{P}\left(\left\{\omega: \lim _{n \rightarrow \infty} X_{n}(\omega)+Y_{n}(\omega) \neq X(\omega)+Y(\omega)\right\}\right)=0$. The conclusion follows.

Problem 2

Prove that on a complete probability space, if $X_{n} \xrightarrow{P} X, Y_{n} \xrightarrow{P} Y$, then $X_{n}+Y_{n} \xrightarrow{P} X+Y$.

Solution:

Proof. For $\epsilon>0$, consider

$$
\begin{aligned}
P\left(\left|X_{n}+Y_{n}-(X+Y)\right|>\varepsilon\right) & \leq P\left(\left|X-X_{n}\right|+\left|Y-Y_{n}\right|>\varepsilon\right) \\
& \leq P\left(\left|X-X_{n}\right|>\varepsilon / 2\right)+P\left(\left|Y-Y_{n}\right|>\varepsilon / 2\right)
\end{aligned}
$$

the result follows immediately by the convergence of probability of X_{n} and Y_{n}.

Problem 3

A bank teller serves customers standing in the queue one by one. Suppose that the service time X_{i} for customer i has mean $\mathbb{E}\left(X_{i}\right)=2$ (minutes) and $\operatorname{Var}\left(X_{i}\right)=1$. We assume that service times for different bank customers are independent. Let Y be the total time the bank teller spends serving 50 customers. Find $\mathbb{P}(90<Y<110)$.

Solution:

Proof. Since $Y=\sum_{i=1}^{50} X_{i}, n=50$ is considered to be sufficiently large, then by CLT,

$$
\frac{Y-100}{\sqrt{50}} \xrightarrow{d} Z=\mathcal{N}(0,1), \text { approximately. }
$$

Therefore

$$
\begin{aligned}
P(90<Y<110) & =P\left(\frac{90-100}{\sqrt{50}}<\frac{Y-100}{\sqrt{50}}<\frac{110-100}{\sqrt{50}}\right) \\
& \approx P(-\sqrt{2}<Z<\sqrt{2}) \\
& =0.8427 .
\end{aligned}
$$

