

Statistical Sciences

DoSS Summer Bootcamp Probability Module 1

Ichiro Hashimoto

University of Toronto

July 8, 2024

Roadmap

A bridge connecting undergraduate probability and graduate probability

Undergraduate-level probability

- Concrete;
- Examples and scenarios;
- Rely on computation...

Roadmap

A bridge connecting undergraduate probability and graduate probability

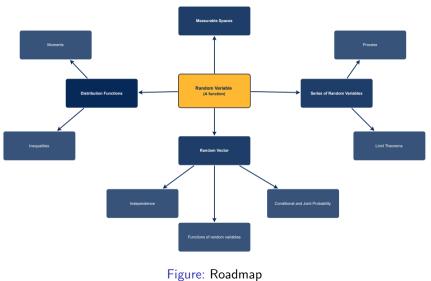
Undergraduate-level probability

- Concrete;
- Examples and scenarios;
- Rely on computation...

Graduate-level probability

- Abstract (measure theory);
- Laws and properties;
- Rely on construction and inference...

Roadmap



<□ ト < □ ト < ■ ト < ■ ト < ■ ト = つ Q (~ July 8, 2024 3/14

Outline

- Measurable spaces
 - ▷ Sample Space
 - $\triangleright \sigma$ -algebra
- Probability measures
 - \triangleright Measures on σ -field
 - Basic results
- Conditional probability
 - ▷ Bayes' rule
 - \triangleright Law of total probability

- ∢ ⊒ →

July 8, 2024

э

4/14

Measurable spaces

Sample Space

The sample space Ω is the set of all possible outcomes of an experiment.

Examples:

- Toss a coin: $\{H, T\}$
- Roll a die: $\{1, 2, 3, 4, 5, 6\}$

Measurable spaces

Sample Space

The sample space Ω is the set of all possible outcomes of an experiment.

Examples:

- Toss a coin: $\{H, T\}$
- Roll a die: $\{1, 2, 3, 4, 5, 6\}$

Event

An event is a collection of possible outcomes (subset of the sample space).

周下 人名卡 人名卡 一日

July 8, 2024

5/14

Examples:

- Get head when tossing a coin: {*H*}
- Get an even number when rolling a die: $\{2,4,6\}$

Measurable spaces

σ -algebra

A $\sigma\text{-algebra}$ ($\sigma\text{-field})$ ${\mathcal F}$ on Ω is a non-empty collection of subsets of Ω such that

- If $A \in \mathcal{F}$, then $A^c \in \mathcal{F}$,
- If $A_1, A_2, \dots \in \mathcal{F}$, then $\cup_{i=1}^{\infty} A_i \in \mathcal{F}$.

Remark: $\varnothing, \Omega \in \mathcal{F}$

Measures on σ -field

A function $\mu: \mathcal{F} \to \mathcal{R}^+ \cup \{+\infty\}$ is called a measure if

- $\mu(\varnothing) = 0$,
- If $A_1, A_2, \dots \in \mathcal{F}$ and $A_i \cap A_j = \emptyset$, then $\mu(\cup_{i=1}^{\infty} A_i) = \sum_{i=1}^{\infty} \mu(A_i)$.

If $\mu(\Omega) = 1$, then μ is called a probability measure.

Measures on σ -field

A function $\mu: \mathcal{F} \to \mathcal{R}^+ \cup \{+\infty\}$ is called a measure if

- $\mu(arnothing)=0$,
- If $A_1, A_2, \dots \in \mathcal{F}$ and $A_i \cap A_j = \emptyset$, then $\mu(\cup_{i=1}^{\infty} A_i) = \sum_{i=1}^{\infty} \mu(A_i)$.

If $\mu(\Omega) = 1$, then μ is called a probability measure.

Properties:

- Monotonicity: $A \subseteq B \Rightarrow \mu(A) \leq \mu(B)$
- Subadditivity: $A \subseteq \cup_{i=1}^{\infty} A_i \quad \Rightarrow \quad \mu(A) \leq \sum_{i=1}^{\infty} \mu(A_i)$
- Continuity from below: $A_i \nearrow A \Rightarrow \mu(A_i) \nearrow \mu(A)$
- Continuity from above: $A_i \searrow A$ and $\mu(A_i) < \infty \implies \mu(A_i) \searrow \mu(A)$

Proof of continuity from below:

<□ ▶ < □ ▶ < ■ ▶ < ■ ▶ < ■ ▶ < ■ ▶ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■

Proof of continuity from above:

Remark: $\mu(A_i) < \infty$ is vital.

< □ ▶ < □ ▶ < ≧ ▶ < ≧ ▶ < ≧ ▶ July 8, 2024 9/14

Examples:

$$\begin{split} \Omega &= \{\omega_1, \omega_2, \cdots\}, \, A = \{\omega_{a_1}, \cdots, \omega_{a_i}, \cdots\} \Rightarrow \mu(A) = \sum_{j=1}^{\infty} \mu(\omega_{a_j}). \end{split}$$
Therefore, we only need to define $\mu(\omega_j) = p_j \ge 0.$ If further $\sum_{i=1}^{\infty} p_j = 1$, then μ is a probability measure.

• Toss a coin:

• Roll a die:

Original problem:

- What is the probability of some event A?
- P(A) is determined by our probability measure.

New problem:

- Given that *B* happens, what is the probability of some event *A*?
- $P(A \mid B)$ is the conditional probability of the event A given B.

Original problem:

- What is the probability of some event A?
- P(A) is determined by our probability measure.

New problem:

• Given that *B* happens, what is the probability of some event *A*?

11/14

July 8, 2024

• $P(A \mid B)$ is the conditional probability of the event A given B.

Example:

• Roll a die: $P({2} | \text{even number})$

Bayes' rule

$$P(A \mid B) = rac{P(A \cap B)}{P(B)}, \quad P(B) > 0$$

Remark: Does conditional probability $P(\cdot | B)$ satisfy the axioms of a probability measure?

<ロ > < 回 > < 回 > < 三 > < 三 > < 三 > < 三 > 三 の へ へ July 8, 2024 12 / 14

Multiplication rule

$$P(A \cap B) = P(A \mid B)P(B) = P(B \mid A)P(A)$$

Generalization:

Law of total probability

Let A_1, A_2, \dots, A_n be a partition of ω , such that $P(A_i) > 0$, then

$$P(B) = \sum_{i=1}^{n} P(A_i) P(B \mid A_i)$$

Problem Set

Problem 1: Prove that for a σ -field \mathcal{F} , if $A_1, A_2, \dots \in \mathcal{F}$, then $\bigcap_{i=1}^{\infty} A_i \in \mathcal{F}$.

Problem 2: Prove monotonicity and subadditivity of measure μ on σ -field.

Problem 3: (Monty Hall problem) Suppose you're on a game show, and you're given the choice of three doors: Behind one door is a car; behind the others, goats. You pick a door, say No. 1, and the host, who knows what's behind the doors, opens another door, say No. 3, which has a goat. He then says to you, "Do you want to pick door No. 2?" Is it to your advantage to switch your choice? (Assumptions: the host will not open the door we picked and the host will only open the door which has a goat.)

