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Recap

Learnt in last module:

• Measurable spaces
◃ Sample Space
◃ σ-algebra

• Probability measures
◃ Measures on σ-field
◃ Basic results

• Conditional probability
◃ Bayes’ rule
◃ Law of total probability
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Outline

• Independence of events
◃ Pairwise independence, mutual independence
◃ Conditional independence

• Random variables
• Distribution functions
• Density functions and mass functions
• Independence of random variables
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Independence of events
Recall the Bayes rule:

P(A | B) = P(A ∩ B)
P(B) , P(B) > 0

• What if B does not change our belief about A?

• This means P(A | B) = P(A).
• Equivalently, P(A ∩ B) = P(A)P(B).

Independence of two events
Two events A and B are independent if P(A ∩ B) = P(A)P(B).

Remark:
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Independence of events
Consider more than 2 events:
Pairwise independence
We say that events A1,A2, · · · ,An are pairwise independent if

P(Ai ∩ Aj) = P(Ai) · P(Aj), ∀i ̸= j

Mutual independence
We say that events A1,A2, · · · ,An are mutually independent or independent if for all
subsets I ∈ {1, 2, · · · , n}

P(∩i∈IAi) =
∏

i∈I
P(Ai)

Remark:
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Independence of events

Example:
• Toss two fair coins.;
• A = { First toss is head}, B = { Second toss is head }, C = { Outcomes are the

same };
• A = {HH,HT},B = {HH,TH},C = {HH,TT};

• P(A ∩ B) = P(A)P(B), P(A ∩ C) = P(A)P(C), P(B ∩ C) = P(B)P(C);
• P(A ∩ B ∩ C) ̸= P(A)P(B)P(C).
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Independence of events

Conditional independence
Two events A and B are conditionally independent given an event C if

P(A ∩ B | C) = P(A | C)P(B | C).

Example:
Previous example continued:

• A = {HH,HT},B = {HH,TH},C = {HH,TT};
• P(A ∩ B | C) =?, P(A | C)P(B | C) =?

Remark:
Equivalent definition:

P(A | B,C) = P(A | C).
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Random variables
Idea:
Instead of focusing on each events themselves, sometimes we care more about
functions of the outcomes.

Example:
• Toss a fair coin twice: {HH,HT,TH,TT}
• Care about the number of heads: {2, 1, 0}

HH HT TH TT

2 1 0

Figure: Mapping from the sample space to the numbers of heads
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Random Variables

Example:
• Select twice from red and black ball with replacement: {RR,RB,BR,BB}
• Care about the number of red balls: {2, 1, 0}

RR RB BR BB

2 1 0

Figure: Mapping from the sample space to the numbers of red balls
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Random Variables

Merits:
• Mapping the complicated events on σ-field to some numbers on real line.
• Simplify different events into the same structure

Random Variables
Consider sample space Ω and the corresponding σ-field F , for X : Ω → R, if

A ∈ R (Borel sets on R) ⇒ X−1(A) ∈ F ,

then we call X as a random variable.
Here X−1(A) = {ω : X(ω) ∈ A}.
We can also say X is F-measurable.
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Distribution functions

Probability measure P(·) on F can induce a measure µ(·) on R:

Probability measure on R
We can define a probability µ on (R,R) as follows:

∀A ∈ R, µ(A) := P(X−1(A)) = P(X ∈ A).
Then µ is a probability measure and it is called the distribution of X.

Remark:
Verify that µ is a probability measure.

• µ(R) = 1.
• If A1,A2, · · · ∈ R are disjoint, then µ(∪∞

i=1Ai) =
∑∞

i=1 µ(Ai).
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Distribution functions
Consider the special set that belongs to R, (−∞, x]:

Cumulative Distribution Function
The cumulative distribution function of random variable X is defined as follows:

F(x) := P(X ≤ x) = P(X−1((−∞, x])), ∀x ∈ R.

Properties of CDF:
• limx→∞ F(x) = 1, limx→−∞ F(x) = 0
• F(·) is non-decreasing
• F(·) is right-continuous
• Let F(x−) = limy↗x F(y), then F(x−) = P(X < x)
• P(X = x) = F(x)− F(x−)
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Distribution functions
Proofs of properties of CDF (first 2 properties):
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(Proof : F(x) is non-decrease)

It XIEXz.

The F(x1) = IP(X * X1)

F (x) = IP(XEX2)
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Density functions and mass functions

Classification of the random variables:
• Discrete random variable: X takes either a finite or countable number of possible

numbers.
• Continuous random variable: The CDF is continuous everywhere.

Another perspective (function):
• Discrete random variable: focus on the probability assigned on each possible values
• Continuous random variable: consider the derivative of the CDF (The continuous

monotone CDF is differentiable almost everywhere)
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Density functions and mass functions
Probability mass function
The probability mass function of X at some possible value x is defined by

pX(x) = P(X = x).

Relationship between PMF and CDF:

F(x) = P(X ≤ x) =
∑

y≤x
pX(y)

Example:

Toss a coin
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Density functions and mass functions

Probability density function
The probability density function of X at some possible value x is defined by

fX(x) =
d
dxF(x).

Relationship between PDF and CDF:

F(x) = P(X ≤ x) =
∫

y≤x
fX(y) dy =

∫ x

−∞
fX(y) dy

Example:
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Independence of random variables

Define independence of random variables based on independence of events:

Independence of random variables
Suppose X1,X2, · · · ,Xn are random variables on (Ω,F ,P), then

X1,X2, · · · ,Xn are independent
⇔ {X1 ∈ A1}, {X2 ∈ A2}, · · · , {Xn ∈ An} are independent, ∀Ai ∈ R

⇔ P(∩n
i=1{Xi ∈ Ai}) =

n∏

i=1
P({Xi ∈ Ai})
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Independence of random variables

Example:
Toss a fair coin twice, denote the number of heads of the i-th toss as Xi, then X1 and
X2 are independent.

• Ai can be {0} or {1}
• {(0, 0), (0, 1), (1, 0), (1, 1)}
• P({X1 ∈ A1} ∩ {X2 ∈ A2}) = 1

4
• P({X1 ∈ A1}) = P({X2 ∈ A2}) = 1

2

Remark:
How to check independence in practice?
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Independence of random variables

Corollary of independence
If X1, · · · ,Xn are random variables, then X1,X2, · · · ,Xn are independent if

P(X1 ≤ x1, · · · ,Xn ≤ xn) =
n∏

i=1
P(Xi ≤ xi)

Remark:
Independence of discrete random variables
Suppose X1, · · · ,Xn can only take values from {a1, · · · }, then Xi’s are independent if

P(∩{Xi = ai}) =
n∏

i=1
P(Xi = ai)
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Problem Set

Problem 1: Give an example where the events are pairwise independent but not
mutually independent.
Problem 2: Verify that the measure µ(·) induced by P(·) is a probability measure on
R.
Problem 3: Prove properties 3 - 5 of CDF F(·).
Problem 4: Bob and Alice are playing a game. They alternatively keep tossing a fair
coin and the first one to get a H wins. Does the person who plays first have a better
chance at winning?
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