

Statistical Sciences

DoSS Summer Bootcamp Probability Module 2

! | |

Ichiro Hashimoto

University of Toronto

July 10, 2024

 290 4 0 F July 10, 2024 1/20

Recap

Learnt in last module:

- *•* Measurable spaces
	- ◃ Sample Space
	- \triangleright σ -algebra
- *•* Probability measures
	- \triangleright Measures on σ -field
	- \triangleright Basic results
- *•* Conditional probability
	- \triangleright Bayes' rule
	- \triangleright Law of total probability

Outline

- *•* Independence of events
	- \triangleright Pairwise independence, mutual independence
	- \triangleright Conditional independence
- *•* Random variables
- *•* Distribution functions
- *•* Density functions and mass functions
- *•* Independence of random variables

Recall the Bayes rule:

$$
P(A | B) = \frac{P(A \cap B)}{P(B)}, \quad P(B) > 0
$$

- What if *B* does not change our belief about *A*?
- : what if B is indepent of A?

Recall the Bayes rule:

$$
P(A | B) = \frac{P(A \cap B)}{P(B)}, \quad P(B) > 0
$$

- What if *B* does not change our belief about *A*?
- This means $P(A | B) = P(A)$.

brown β does not change the probability,

Recall the Bayes rule:

$$
P(A | B) = \frac{P(A \cap B)}{P(B)}, \quad P(B) > 0
$$

- What if *B* does not change our belief about *A*?
- This means $P(A | B) = P(A)$.
- Equivalently, $P(A \cap B) = P(A)P(B)$. Solutions rule:
 $P(A | B) = \frac{P(B)}{P(A | B)}$
 $P(A | B) = P(A).$
 $P(A \cap B) = P(A)P(B)$
with this as the definitions use this as the definition of independence

Recall the Bayes rule:

$$
P(A | B) = \frac{P(A \cap B)}{P(B)}, \quad P(B) > 0
$$

- What if B does not change our belief about A?
- This means $P(A | B) = P(A)$.
- Equivalently, $P(A \cap B) = P(A)P(B)$.

Independence of two events

Two events A and B are independent if $P(A \cap B) = P(A)P(B)$.

Remark:

Consider more than 2 events:

Pairwise independence

We say that events A_1, A_2, \cdots, A_n are pairwise independent if

$$
P(A_i \cap A_j) = P(A_i) \cdot P(A_j), \quad \forall i \neq j
$$

メタト メミト メミト 4 0 8 D. 298 July 10, 2024 5 / 20

Consider more than 2 events:

Pairwise independence

We say that events A_1, A_2, \cdots, A_n are pairwise independent if

$$
P(A_i \cap A_j) = P(A_i) \cdot P(A_j), \quad \forall i \neq j
$$

Mutual independence E (

We say that events A_1, A_2, \cdots, A_n are mutually independent or independent if for all subsets $I \in \{1, 2, \cdots, n\}$ -
-
-
for all Mutua
We say
<u>subsets</u>

$$
P(\cap_{i\in I}A_i)=\prod_{i\in I}P(A_i)
$$

Fl	Fl	
Fl	Fl	
Fl	Chect	1 = $\{C, \overline{J}\}$, \overline{C}
Chect	1 = $\{C, \overline{J}\}$, \overline{C}	
TDRONTO	Thum	IP (A \overline{C} A \overline{C} A \overline{D}) \leq (PLA \overline{C}) $\ P(A\overline{J})\ _{\leq 1}$ and $\ P(A\overline$

Consider more than 2 events:

Pairwise independence

We say that events A_1, A_2, \cdots, A_n are pairwise independent if

$$
P(A_i \cap A_j) = P(A_i) \cdot P(A_j), \quad \forall i \neq j
$$

Mutual independence

We say that events A_1, A_2, \cdots, A_n are mutually independent or independent if for all subsets $I \in \{1, 2, \cdots, n\}$ $TT \rightarrow \cdots$

$$
P(\cap_{i\in I}A_i)=\prod_{i\in I}P(A_i)
$$

Remark:

- *•* Toss two fair coins.;
- $A = \{$ First toss is head $\}$, $B = \{$ Second toss is head $\}$, $C = \{$ Outcomes are the same *}*;

•
$$
A = \{HH, HT\}, B = \{HH, TH\}, C = \{HH, TT\};
$$

- Toss two fair coins.:
- $A = \{$ First toss is head $\}$, $B = \{$ Second toss is head $\}$, $C = \{$ Outcomes are the same *}*; ead $f, C = \{$ Outcomes are the
 $\lbrack P(A) \times \lbrack P(B) \times \lbrack P(C) \times \frac{2}{q} \times \frac{1}{2} \rbrack$
- \bullet *A* = {*HH,HT*}*,B* = {*HH,TH*}*,C* = {*HH,TT*};
- $P(A \cap B) = P(A)P(B)$, $P(A \cap C) = P(A)P(C)$, $P(B \cap C) = P(B)P(C)$;
	- A $AB = \int H$ H 3 $P(AAB) = P(BAC) > P(CAA) = \frac{1}{4} = (\frac{1}{2})^2$ BNC = { M| $CAA = \{HH\}$ A, B, C are purmise indepent

- Toss two fair coins.:
- $A = \{$ First toss is head $\}$, $B = \{$ Second toss is head $\}$, $C = \{$ Outcomes are the same *}*;
- $A = \{HH, HT\}$, $B = \{HH, TH\}$, $C = \{HH, TT\}$;
- $P(A \cap B) = P(A)P(B)$, $P(A \cap C) = P(A)P(C)$, $P(B \cap C) = P(B)P(C)$;
- $P(A \cap B \cap C) \neq P(A)P(B)P(C)$. $A \wedge B \wedge C = \int H \wedge C$
 $B \wedge B \wedge C = \int H \wedge C$ \Rightarrow $\qquad \qquad |P(A \wedge C) - A| \neq (\frac{1}{2})^3$: $P(A) \wedge (B \wedge C)$

A, ^B , ^C am not mutually independent .

Conditional independence

Two events A and B are conditionally independent given an event C if

 $P(A \cap B \mid C) = P(A \mid C)P(B \mid C)$.

個 ト イミト イミト 4 0 8 290 July 10, 2024 7 / 20

Conditional independence

Two events A and B are conditionally independent given an event C if

 $P(A \cap B \mid C) = P(A \mid C)P(B \mid C)$.

Example:

Previous example continued:

- $A = \{HH, HT\}$, $B = \{HH, TH\}$, $C = \{HH, TT\}$;
- $P(A \cap B | C) = ?$, $P(A | C)P(B | C) = ?$
	- $A \cap B \cap C$ = { HH }

indence of events

\nditional independence

\nevents A and B are conditionally independent given an event C if

\n
$$
P(A \cap B | C) = P(A | C)P(B | C).
$$
\nimplies

\nangle

\nconverges to the example continued:

\n
$$
A = \{HH, HT\}, B = \{HH, TH\}, C = \{HH, TT\};
$$

\n
$$
P(A \cap B | C) = ?
$$
\n
$$
P(A | C)P(B | C) = ?
$$
\n
$$
P(A | C)P(B | C) = ?
$$
\n
$$
P(A | C)P(B | C) = ?
$$
\n
$$
P(A | C)P(B | C) = ?
$$
\n
$$
P(A | C)P(B | C) = ?
$$
\n
$$
P(A | C)P(B | C) = ?
$$
\n
$$
P(A | C)P(B | C) = ?
$$
\n
$$
P(A | C)P(B | C) = ?
$$
\n
$$
P(A | C)P(C) = ?
$$
\n
$$
P(A | C) = P(A | C)P(B | C) = ?
$$
\n
$$
P(A | C) = P(A | C)P(B | C) = ?
$$
\n
$$
P(A | C) = P(A | C)P(B | C) = ?
$$
\n
$$
P(A | C) = P(A | C)P(B | C) = ?
$$
\n
$$
P(A | C) = P(A | C)P(B | C) = ?
$$
\n
$$
P(A | C) = P(A | C)P(B | C) = ?
$$
\n
$$
P(A | C) = P(A | C)P(B | C) = ?
$$
\n
$$
P(A | C) = P(A | C)P(B | C) = ?
$$
\n
$$
P(A | C) = P(A | C)P(B | C) = ?
$$
\n
$$
P(A | C) = P(A | C)P(B | C) = ?
$$
\n
$$
P(A | C) = P(A | C)P(B | C) = ?
$$
\n
$$
P(A | C) = P(A | C)P(B | C) = ?
$$
\n
$$
P(A | C) = P(A | C)P(B | C) = ?
$$
\n
$$
P(A | C) = P(A | C)P(B | C) = ?
$$
\n
$$
P(A | C) = P(A | C)P(B | C) =
$$

 50

Conditional independence

Two events A and B are conditionally independent given an event C if

 $P(A \cap B \mid C) = P(A \mid C)P(B \mid C)$.

Example:

Previous example continued:

- $A = \{HH, HT\}$, $B = \{HH, TH\}$, $C = \{HH, TT\}$;
- $P(A \cap B \mid C) = ?$, $P(A \mid C)P(B \mid C) = ?$ **Example:**

Previous example of $A = \{HH, HT$
 \bullet $P(A \cap B \mid C)$

Remark:

Equivalent definition

Remark:

Equivalent defnition:

$$
P(A \mid B, C) = P(A \mid C). \qquad \text{can show } \begin{array}{ll} A_{13} & \text{ess} \\ a_{12} & \text{class} \end{array}
$$

July 10, 2024 7 / 20

 2990

 $\mathcal{A} \oplus \mathcal{A} \oplus \mathcal{A} \oplus \mathcal{A} \oplus \mathcal{A} \oplus \mathcal{A}$

Random variables

Idea:

Instead of focusing on each events themselves, sometimes we care more about functions of the outcomes.

イロト イ部 トイヨ トイヨト D. Ω July 10, 2024 8 / 20

Random variables

Idea:

Instead of focusing on each events themselves, sometimes we care more about functions of the outcomes.

- *•* Toss a fair coin twice: *{*HH*,* HT*,*TH*,*TT*}*
- *•* Care about the number of heads: *{*2*,* 1*,* 0*}*

Random variables

Idea:

Instead of focusing on each events themselves, sometimes we care more about functions of the outcomes.

Example:

- *•* Toss a fair coin twice: *{*HH*,* HT*,*TH*,*TT*}*
- *•* Care about the number of heads: *{*2*,* 1*,* 0*}*

Figure: Mapping from the sample space to the numbers of heads

Random Variables

Example:

- *•* Select twice from red and black ball with replacement: *{*RR*,* RB*,* BR*,* BB*}* ⁼S.
- *•* Care about the number of red balls: *{*2*,* 1*,* 0*}*

Figure: Mapping from the sample space to the numbers of red balls

Random Variables

Merits:

- <u>Mappin</u>g the complicated events on *σ*-field to some numbers on real line. **ts:**
Mappir
Simplif
- *•* Simplify diferent events into the same structure

Random Variables

Merits:

- *•* Mapping the complicated events on σ-feld to some numbers on real line.
- Simplify different events into the same structure

Random Variables

Consider sample space Ω and the corresponding σ -field ${\cal F}$, for $X\colon \Omega\to\mathbb R$, if

$$
A\in\mathcal{R} \quad \text{(Borel sets on } \mathbb{R}\text{)} \Rightarrow X^{-1}(A)\in\mathcal{F},
$$

July 10, 2024 10 / 20

 2040

then we call X as a random variable.
Here $X^{-1}(A) = (e^{\theta X}(A)) \in A$ Here $X^{-1}(A) = \{\omega : X(\omega) \in A\}.$ We can also say X is *F*-measurable. **riables**

g the complicated eve

different events into

riables

ple space Ω and the
 $A \in \mathcal{R}$ (Be

X as a random variab
 $\lim_{x \to \infty} \sum_{k=1}^{\infty} X(\omega) \in A$).

say X is F-measurab $A \in \mathcal{K}$ (
we call \underline{X} as a random vari
 $X^{-1}(A) = \{ \underline{\omega}^{\circ} : X(\omega) \in A \}$
an also say X is $\overline{\mathcal{F}}$ -measura

Distribution functions $(\Omega, \mathcal{F}, \mathbb{P}) \longrightarrow (\mathbb{P}, \mathcal{R})$

probability oneusance?

Probability measure $P(\cdot)$ on $\mathcal F$ can induce a measure $\mu(\cdot)$ on $\mathcal R$:

Probability measure on *R*

We can define a probability μ on (R, R) as follows:

ions
$$
(\Omega, \mathcal{F}, (\rho)) \xrightarrow{\times} (\mathcal{F}, \mathcal{R})
$$

\n*P(·)* on *F* can induce a measure $\mu(·)$ on
\non *R*
\nability μ on (R, \mathcal{R}) as follows:
\n $\forall A \in \mathcal{R}, \quad \mu(A) := P(X^{-1}(A)) = P(X \in A)$.
\nty measure and it is called the distribution of
\n $\forall A \in \mathcal{R}$

Then μ is a probability measure and it is called the distribution of X.

\n
$$
\begin{aligned}\n \text{Var} & \text{Cov} & \text{ch} & \text{ch} & \text{ch} \\
 \text{Civ} & \mu(\phi) &= 0 \\
 \text{Civ} & \text{Cov} & \text{Cov} & \text{Cov} \\
 \text{Cov} & \text{Cov
$$

Probability measure $P(\cdot)$ on F can induce a measure $\mu(\cdot)$ on \mathcal{R} :

Probability measure on *R*

We can define a probability μ on (R, R) as follows:

$$
\forall A \in \mathcal{R}, \quad \mu(A) := P(X^{-1}(A)) = P(X \in A).
$$

 $AB + AB + AB + AB$ July 10, 2024 11 / 20

Then μ is a probability measure and it is called the distribution of X.

Remark:

Verify that μ is a probability measure.

- $\mu(\mathbb{R}) = 1$.
- If $A_1, A_2, \dots \in \mathcal{R}$ are disjoint, then $\mu(\cup_{i=1}^{\infty} A_i) = \sum_{i=1}^{\infty} \mu(A_i)$.

Consider the special set that belongs to \mathcal{R} , $(-\infty, x]$:

Cumulative Distribution Function

The cumulative distribution function of random variable X is defined as follows:

$$
F(x) := P(X \leq x) = P(X^{-1}((-\infty, x])), \quad \forall x \in \mathbb{R}.
$$

15
\nIt that belongs to R,
$$
(-\infty, x]
$$
:
\nIn function
\n
$$
P(X \le x) = P(X^{-1}((-\infty, x])),
$$
\n
$$
\{ k \notin x \} = \{ k \in (-\infty, x] \}
$$
\n
$$
= k^{-1} \left((-\infty, x] \right)
$$

July 10, 2024 12 / 20

G.

 298

 $\sqrt{2}$ \rightarrow $\sqrt{2}$ \rightarrow $\sqrt{2}$ \rightarrow

4 0 8

Consider the special set that belongs to \mathcal{R} , ($-\infty$, x):

Cumulative Distribution Function

The cumulative distribution function of random variable X is defined as follows:

$$
F(x) := P(X \leq x) = P(X^{-1}((-\infty, x])), \quad \forall x \in \mathbb{R}.
$$

Proofs of properties of CDF (first 2 properties):

tribution functions

\nProofs of properties of CDF (first 2 properties):

\n
$$
F(x) = \left| \int_{0}^{x} \left(\sqrt{x} \times \right) \right|
$$
\n
$$
W_{\text{max}} \times \rightarrow \infty \qquad \left\{ x \leq x \right\} \quad \text{and} \quad \Omega
$$
\n
$$
\left| \int_{x \to 0}^{x} \mu_{x} \left(\int_{x \to 0}^{x} \mu_{y} \right) \left(\int_{x \to 0}^{x} \mu_{z} \right) \right|
$$
\n
$$
= \left| \int_{x \to 0}^{x} \left| \int_{x \to 0}^{x} \left(\int_{x \to 0}^{x} \mu_{z} \right) \right| \right|
$$
\n
$$
= \left| \int_{x \to 0}^{x} \left| \int_{x \to 0}^{x} \left(\int_{x \to 0}^{x} \mu_{z} \right) \right| \right|
$$
\n
$$
= \left| \int_{x \to 0}^{x} \left| \int_{x \to 0}^{x} \left(\int_{x \to 0}^{x} \mu_{z} \right) \right| \right|
$$
\n
$$
= \left| \int_{x \to 0}^{x} \left| \int_{x \to 0}^{x} \left(\int_{x \to 0}^{x} \mu_{z} \right) \right| \right|
$$
\n
$$
= \left| \int_{x \to 0}^{x} \left| \int_{x \to 0}^{x} \left(\int_{x \to 0}^{x} \mu_{z} \right) \right| \right|
$$
\n
$$
= \left| \int_{x \to 0}^{x} \left| \int_{x \to 0}^{x} \left(\int_{x \to 0}^{x} \mu_{z} \right) \right| \right|
$$
\nIDENTIFY and SET UP: (1)

(Proof : F(x) is non-decrease) It XIEXz. The F(x1) ⁼ IP(X * X1) ^F (x) ⁼ IP(XEX2) Since Exa , & XEX. 3 C3x5423. Therefore, by monotonicity of IP , we canclue IP(X ⁼ X1) & IP(X * X21 - -

Classifcation of the random variables:

- Discrete random variable: X takes either a finite or countable number of possible numbers.
- *•* Continuous random variable: The CDF is continuous everywhere.

Classifcation of the random variables:

- Discrete random variable: X takes either a finite or countable number of possible numbers.
- *•* Continuous random variable: The CDF is continuous everywhere.

Another perspective (function):

- Discrete random variable: focus on the probability assigned on each possible values
- *•* Continuous random variable: consider the derivative of the CDF (The continuous monotone CDF is diferentiable almost everywhere)

Probability mass function

The probability mass function of X at some possible value x is defined by

$$
p_X(x) = P(X = x).
$$

Relationship between PMF and CDF: If K _{is} discribe

$$
p_X(x) = P(X = x).
$$
\n
$$
= \text{ and } \text{CDF: } \begin{array}{c} \text{If } X \text{ is odd} \\ \text{If } X \text{ is odd} \end{array}
$$
\n
$$
F(x) = P(X \le x) = \sum_{y \le x} p_X(y)
$$
\n
$$
= \text{Sum of } \text{mag} \text{ function}
$$

July 10, 2024 15 / 20

 QQQ

 $\mathcal{A} \oplus \mathcal{A} \oplus \mathcal{A} \oplus \mathcal{A} \oplus \mathcal{A} \oplus \mathcal{A}$

4 0 5

Probability mass function

The probability mass function of X at some possible value x is defined by

$$
p_X(x) = P(X = x).
$$

Relationship between PMF and CDF:

$$
F(x) = P(X \le x) = \sum_{y \le x} p_X(y)
$$

Example:

Toss a coin

Probability density function

The probability density function of X at some possible value x is defined by $f X$ at some po
 $f_X(x) = \frac{d}{dx}F(x)$
 $\frac{d}{dx}F(x) = \frac{1}{x}F(x)$

CDF:

Relationship between PDF and CDF:

$$
F(x) = P(X \le x) = \int_{y \le x} f_X(y) \ dy = \int_{-\infty}^x f_X(y) \ dy
$$

 $f_X(x) = \frac{d}{dx}F(x)$.

continuous case .

Probability density function

The probability density function of X at some possible value x is defined by

$$
f_X(x) = \frac{d}{dx}F(x).
$$

Relationship between PDF and CDF:

$$
F(x) = P(X \le x) = \int_{y \le x} f_X(y) \, dy = \int_{-\infty}^x f_X(y) \, dy
$$

Example:

$$
\int_{x}^x \sqrt{f(x)} \, dy = \int_{-\infty}^x f_X(y) \, dy = \int_{-\infty}^x f_X(y) \, dy
$$

$$
\int_{-\infty}^x f_X(y) \, dy = \int_{-\infty}^x f_X(y) \, dy
$$

э 298 4 0 F July 10, 2024 16 / 20

Defne independence of random variables based on independence of events:

Independence of random variables

 \Leftrightarrow $\widehat{P(\bigcap_{i=1}^{n}{X_i \in A_i})} = \prod_{i=1}^{n}$

Suppose X_1, X_2, \cdots, X_n are random variables on (Ω, \mathcal{F}, P) , then

 $i=1$

 X_1, X_2, \cdots, X_n are independent

endence of random variables

\nne independence of random variables based on independence of even

\nbe
$$
X_1, X_2, \dots, X_n
$$
 are random variables on (Ω, \mathcal{F}, P) , then

\n
$$
X_1, X_2, \dots, X_n
$$
\nare independent

\n
$$
\Leftrightarrow \{X_1 \in A_1\}, \{X_2 \in A_2\}, \dots, \{X_n \in A_n\}
$$
\nare independent

\n
$$
\Leftrightarrow \overbrace{P(\bigcap_{i=1}^n \{X_i \in A_i\})}^n = \prod_{i=1}^n P(\{X_i \in A_i\})}^n \quad \text{where } \{X_i \in \mathcal{R}\}
$$
\n
$$
\Leftrightarrow \text{where } \{X_i \in A_i\} \text{ and } \{X_i \in \mathcal{R}\}
$$
\nwhere $\{X_i \in A_i\}$ and $\{X_i \in \mathcal{R}\}$ are independent, and $\{X_i \in \mathcal{R}\}$.

\nwhere $\{X_i \in A_i\}$ and $\{X_i \in \mathcal{R}\}$ are independent, and $\{X_i \in \mathcal{R}\}$.

\nwhere $\{X_i \in A_i\}$ and $\{X_i \in A_i\}$ are independent, and $\{X_i \in A_i\}$ are independent.

 $P({X_i \in A_i})$

Example:

Toss a fair coin twice, denote the number of heads of the *i*-th toss as X_i , then X_1 and X_2 are independent.

- *•* Aⁱ can be *{*0*}* or *{*1*}*
- *• {*(0*,* 0)*,*(0*,* 1)*,*(1*,* 0)*,*(1*,* 1)*}*
- $P({X_1 \in A_1} \cap {X_2 \in A_2}) = \frac{1}{4}$

•
$$
P({X_1 \in A_1}) = P({X_2 \in A_2}) = \frac{1}{2}
$$

$$
\int \mathbb{P}(\{\kappa_{c}\in A_{2}\} \cap \{\kappa_{L}\in A_{2}\})
$$

=
$$
\mathbb{P}(\kappa \in A_{1}) \mathbb{P}(\kappa \in A_{L})
$$

Actually , we need to also check this is thre for

 c_{11} A_i \in \mathcal{R} .

4 0 8 QQQ July 10, 2024 18 / 20

Example:

Toss a fair coin twice, denote the number of heads of the *i*-th toss as X_i , then X_1 and X_2 are independent.

• A_i can be $\{0\}$ or $\{1\}$

• $\{ (0,0), (0,1), (1,0), (1,1) \}$

• $P((X \subset A) \cap (X \subset A))$ X_2 are independent.

- *•* Aⁱ can be *{*0*}* or *{*1*}*
- *• {*(0*,* 0)*,*(0*,* 1)*,*(1*,* 0)*,*(1*,* 1)*}*
- $P({X_1 \in A_1} \cap {X_2 \in A_2}) = \frac{1}{4}$

•
$$
P(\{X_1 \in A_1\}) = P(\{X_2 \in A_2\}) = \frac{1}{2}
$$

$$
\begin{array}{cc}\n\text{(b)} & \text{(c)} & \text{(d)} \\
\text{(e)} & \text{(f)} & \text{(f)} & \text{(g)} \\
\text{(h)} & \text{(h)} & \text{(i)} & \text{(j)}\n\end{array}
$$

 $\sim \alpha / n$

July 10, 2024 18 / 20

A EXA EXA EXA QOO

Remark:

How to check independence in practice?

Corollary of independence

If X_1, \dots, X_n are random variables, then X_1, X_2, \dots, X_n are independent if

$$
P(X_1 \leq x_1, \cdots, X_n \leq x_n) = \prod_{i=1}^n P(X_i \leq x_i)
$$

$$
C \text{loosy} \quad A_i = (-\infty, \infty_i) \quad \text{the dotwith of independent implies}
$$
\n
$$
(P (X_1 \in X_1, \cdots, X_n \in X_n) = \prod_{i=1}^{n} P(X_i \in X_{i-})
$$
\n
$$
\text{This result says } \text{you} \quad \text{d} \text{curl} \quad \text{have the check } \text{every} \quad A_i \in \mathcal{R}
$$
\n
$$
\text{you} \quad \text{we have } A_i = (-\infty, \infty_i)
$$

御き メミメ メミメン 毛の 4 0 8 2990 July 10, 2024 19 / 20

Corollary of independence

If X_1, \dots, X_n are random variables, then X_1, X_2, \dots, X_n are independent if

andom variables

\nlence

\nom variables, then
$$
X_1, X_2, \cdots, X_n
$$
 are independent:

\n
$$
P(X_1 \leq x_1, \cdots, X_n \leq x_n) = \prod_{i=1}^n P(X_i \leq x_i)
$$
\ntree random variables

\nan only take values from $\{a_1, \cdots\}$, then X_i

\n
$$
P(\bigcap \{X_i = a_i\}) = \prod_{i=1}^n P(X_i = a_i)
$$

Remark:

Independence of discrete random variables

Suppose X_1, \dots, X_n can only take values from $\{a_1, \dots\}$, then X_i 's are independent if

$$
P(\bigcap \{X_i = a_i\}) = \prod_{i=1}^n P(X_i = a_i)
$$

 $\mathcal{A} \oplus \mathcal{B} \rightarrow \mathcal{A} \oplus \mathcal{B} \rightarrow \mathcal{A} \oplus \mathcal{B}$ 4 0 8 200 July 10, 2024 19 / 20

Problem Set

Problem 1: Give an example where the events are pairwise independent but not mutually independent.

Problem 2: Verify that the measure $\mu(\cdot)$ induced by $P(\cdot)$ is a probability measure on *R*.

Problem 3: Prove properties 3 - 5 of CDF F(*·*).

Problem 4: Bob and Alice are playing a game. They alternatively keep tossing a fair coin and the first one to get a H wins. Does the person who plays first have a better chance at winning?

