

Statistical Sciences

DoSS Summer Bootcamp Probability Module 4

 $\begin{array}{c} \hline \end{array}$ $\overline{}$ \vert

Ichiro Hashimoto

University of Toronto

July 16, 2024

 \rightarrow \equiv \rightarrow \rightarrow \equiv \rightarrow 200 July 16, 2024 1/24

Recap

Learnt in last module:

- *•* Discrete probability
	- \triangleright Classical probability
	- \triangleright Combinatorics
	- \triangleright Common discrete random variables
- *•* Continuous probability
	- \triangleright Geometric probability
	- \triangleright Common continuous random variables

July 16, 2024 2 / 24

E

 298

 $\left\{ \bigoplus_k k \bigoplus_k k \bigoplus_k k \right\}$

4 0 8

• Exponential family

Outline

- *•* Joint and marginal distributions
	- \triangleright Joint cumulative distribution function
	- \triangleright Independence of continuous random variables
- *•* Conditional distribution
- *•* Functions of random variables
	- \triangleright Convolutions
	- \triangleright Change of variables
	- . Order statistics

Random vector: joint behaviour of multivariate random variables

andom vector: joint behaviour of multivariate random variables

\n
$$
\begin{array}{ll}\n\text{Ric} & \text{curl} &
$$

In strand of that you call the
$$
x
$$
 to be x and y is x and y

K ロ > K 個 > K 코 > K 코 > H 코 299 July 16, 2024 4 / 24

$$
X_1: \underline{O_1} \to \mathbb{R}, \qquad X_2: \underline{O_2} \to \mathbb{R}
$$

$$
\overbrace{D_1} \to \mathbb{R}, \qquad \overbrace{D_2} \to \mathbb{R}
$$

$$
\chi = (X_1, X_2) \times \underbrace{0, X_1, X_2}_{\text{white}} \rightarrow \mathbb{R}^{2}
$$

Random vector: joint behaviour of multivariate random variables

Joint cumulative distribution function

Consider a random vector (X_1, X_2, \ldots, X_d) , the joint cumulative distribution function of (X_1, X_2, \ldots, X_d) is defined by: S
tivariate random variables
 $\mathbb{P}[X_1 \le x_1, X_2 \le x_2, \ldots, X_d \le x_d$

$$
F_{X_1,X_2,\dots,X_d}(x_1,x_2,\dots,x_d)=\mathbb{P}[X_1\leq x_1,X_2\leq x_2,\dots,X_d\leq x_d].
$$

Random vector: joint behaviour of multivariate random variables

Joint cumulative distribution function

Consider a random vector (X_1, X_2, \ldots, X_d) , the joint cumulative distribution function of (X_1, X_2, \ldots, X_d) is defined by:

$$
F_{X_1,X_2,\dots,X_d}(x_1,x_2,\dots,x_d)=\mathbb{P}[X_1\leq x_1,X_2\leq x_2,\dots,X_d\leq x_d].
$$

Remark:

For discrete random vector, it suffices to find the joint probability mass function

and marginal distributions

\nsum vector: joint behaviour of multivariate random variables

\ncumulative distribution function

\n
$$
X_2, \ldots, X_d
$$
 is defined by:

\n
$$
F_{X_1, X_2, \ldots, X_d}(x_1, x_2, \ldots, x_d) = \mathbb{P}[X_1 \le x_1, X_2 \le x_2, \ldots, X_d \le x_d].
$$
\n**rk:**

\n
$$
F_{X_1, X_2, \ldots, X_d}(x_1, x_2, \ldots, x_d) = \mathbb{P}[X_1 \le x_1, X_2 \le x_2, \ldots, X_d \le x_d].
$$

\n**rk:**

\n
$$
P_{X_1, \ldots, X_n}(x_1, \ldots, x_n) = P(X_1 = x_1, X_2 = x_2, \ldots, X_n = x_n), \quad x_i \in \mathbb{R},
$$

\n
$$
\underbrace{\mathbb{P}((X_1, \ldots, X_n) \in C)}_{(x_1, \ldots, x_n) \in C} p_{X_1, \ldots, X_n}(x_1, \ldots, x_n).
$$

\n
$$
\underbrace{\mathbb{P}((X_1, \ldots, X_n) \in C)}_{J \text{uly 16, 2024}} = \underbrace{\mathbb{P}((X_1, \ldots, X_n) \in C)}_{J \text{uly 16, 2024}} = \underbrace{\mathbb{P}((X_1, \ldots, X_n) \in C)}_{J \text{uly 16, 2024}} = \underbrace{\mathbb{P}((X_1, \ldots, X_n) \in C)}_{J \text{uly 16, 2024}} = \underbrace{\mathbb{P}((X_1, \ldots, X_n) \in C)}_{J \text{uly 16, 2024}} = \underbrace{\mathbb{P}((X_1, \ldots, X_n) \in C)}_{J \text{uly 16, 2024}} = \underbrace{\mathbb{P}((X_1, \ldots, X_n) \in C)}_{J \text{uly 16, 2024}} = \underbrace{\mathbb{P}((X_1, \ldots, X_n) \in C)}_{J \text{uly 16, 2024}} = \underbrace{\mathbb{P}((X_1, \ldots,
$$

July 16, 2024 4 / 24

and

Remark:

For continuous random vector, consider the joint probability density function.

Joint probability density function

$$
f_{X_1,\ldots,X_n}(x_1,\ldots,x_n)=\frac{\partial^n F_{X_1,\ldots,X_n}(x_1,\ldots,x_n)}{\partial x_1\ldots\partial x_n},\quad x_i\in\mathbb{R}.
$$

Similarly,

the following equations:

\n
$$
\begin{aligned}\n\text{Equation 1:} \\
\text{Equation 2:} \\
\text{Equation 3:} \\
\text{Equation 4:} \\
\text{Equation 5:} \\
\text{Equation 6:} \\
\text{Equation 7:} \\
\text{Equation 7:} \\
\text{Equation 7:} \\
\text{Equation 8:} \\
\text{Equation 8:} \\
\text{Equation 9:} \\
\text{Equation 1:} \\
\text{Equation 1:} \\
\text{Equation 1:} \\
\text{Equation 2:} \\
\text{Equation 3:} \\
\text{Equation 4:} \\
\text{Equation 5:} \\
\text{Equation 6:} \\
\text{Equation 7:} \\
\text{Equation 7:} \\
\text{Equation 8:} \\
\text{Equation 8:} \\
\text{Equation 9:} \\
\text{Equation 1:} \\
\text{Equation 1:} \\
\text{Equation 1:} \\
\text{Equation 1:} \\
\text{Equation 2:} \\
\text{Equation 3:} \\
\text{Equation 4:} \\
\text{Equation 5:} \\
\text{Equation 6:} \\
\text{Equation 7:} \\
\text{Equation 7:} \\
\text{Equation 8:} \\
\text{Equation 8:} \\
\text{Equation 9:} \\
\text{Equation 1:} \\
\text{Equation 1:} \\
\text{Equation 1:} \\
\text{Equation 2:} \\
\text{Equation 3:} \\
\text{Equation 4:} \\
\text{Equation 5:} \\
\text{Equation 6:} \\
\text{Equation 7:} \\
\text{Equation 7:} \\
\text{Equation 8:} \\
\text{Equation 9:} \\
\text{Equation 1:} \\
\text{Equation 1:} \\
\text{Equation 1:} \\
\text{Equation 1:} \\
\text{Equation 2:} \\
\text{Equation 3:} \\
\text{Equation 3:} \\
\text{Equation 4:} \\
\text{Equation 5:} \\
\text{Equation 6:} \\
\text{Equation 7:} \\
\text{Equation 7:} \\
\text{Equation 8:} \\
\text{Equation 9:} \\
\text{Equation 9:} \\
\text{Equation 1:} \\
\text{Equation 1:} \\
\text{Equation 1:} \\
\text{Equation 2:} \\
\text{Equation 3:} \\
\text{Equation 3:} \\
\text{Equation 4:} \\
\text{Equation 5:} \\
\text{Equation
$$

July 16, 2024 5 / 24

-B.

 298

$$
except \quad \chi_{\mathcal{C}}
$$

Consider the special case of *C* where $X_1, \dots, X_{i-1}, X_{i+1}, \dots, X_n$ are allowed to take any possible values:

• Discrete case

narginal distributions

\n**2**
$$
\mathbb{E} \text{ special case of } C \text{ where } X_1, \dots, X_{i-1}, X_{i+1}, \dots, X_n \text{ are allowed to be a case}
$$

\n**3** $\mathbb{P}(X_i = x_i) = \mathbb{P}(X_i = x_i, X_j \in \mathbb{R}, j \neq i) = \sum_{x_j, j \neq i} p_{X_1, \dots, X_n}(x_1, \dots, x_n).$

\n**4** $\mathbb{E} \{X_i = x_i\} = \mathbb{E} \{X_i = x_i, X_j \in \mathbb{R}, j \neq i\}$

\n**5** $\mathbb{E} \{X_i = x_i\} = \mathbb{E} \{X_i = x_i, X_j \in \mathbb{R}, j \neq i\}$

• Continuous case

and marginal distributions

\n
$$
\begin{aligned}\n\text{order the special case of } C \text{ where } X_1, \dots, X_{i-1}, X_{i+1}, \dots, X_n \text{ are allowed to take possible values:} \\
\text{Discrete case} \\
\mathbb{P}(X_i = x_i) &= \mathbb{P}(X_i = x_i, X_j \in \mathbb{R}, j \neq i) = \sum_{x_j, j \neq i} p_{X_1, \dots, X_n}(x_1, \dots, x_n). \\
\text{Continuous case} \\
\mathbb{P}(X_i \leq x_i) &= \mathbb{P}(X_i \leq x_i, X_j \in \mathbb{R}, j \neq i) \\
&= \int_{-\infty}^{x_i} \left(\int_{-\infty}^{\infty} \dots \int_{-\infty}^{\infty} f_{X_1, \dots, X_n}(t_1, \dots, t_n) \, dt_1 \dots dt_{i-1} \right) \, dt_i \\
&\quad \text{In together, } \quad \text{for } t_i \in \mathbb{R}, \text{ and } t_i \in \mathbb{R} \text{ and } t_i.\n\end{aligned}
$$

Taking the derivative regarding *xi*, this gives us the marginal probability density function.

Marginal probability density function

Int and marginal distributions

\nTaking the derivative regarding
$$
x_i
$$
, this gives us the marginal probability density function.

\n**Marginal probability density function**

\n
$$
f_{X_i}(x_i) = \int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} f_{X_1,\ldots,X_n}(x_1,\ldots,x_i,\ldots,x_n) \, dx_1\cdots dx_{i-1} dx_{i+1}\cdots dx_n.
$$
\nEvery \oint \oint

Taking the derivative regarding *xi*, this gives us the marginal probability density function.

Marginal probability density function

$$
f_{X_i}(x_i)=\int_{-\infty}^{\infty}\cdots\int_{-\infty}^{\infty}f_{X_1,\ldots,X_n}(x_1,\cdots,x_i,\cdots,x_n)\,dx_1\cdots dx_{i-1}dx_{i+1}\cdots dx_n.
$$

Remark:

Marginal probability mass function (density function) of X_i is obtained by summing (integrating) the joint probability over all the other dimensions.

Example: Draws from an urn

Suppose each of two urns contains twice as many red balls as blue balls, and no others, and suppose one ball is randomly selected from each urn, with the two draws independent of each other. Let *A* and *B* be discrete random variables associated with the outcomes of the draw from the first urn and second urn respectively. 1 represents a draw of red ball, while 0 represents a draw of blue ball. ball is randomly selection.

ball is randomly selection

ach other. Let A and

the draw from the first

while 0 represents a d
 $j\sigma$ ⁺

Table: Joint and marginal pmf of draws from an urn

 Ω July 16, 2024 8 / 24

Examples: continuous case

Consider the joint probability density function

I distributions
us case
bability density function

$$
f(x,y) = \begin{cases} kx & \text{for } 0 < x < 1, 0 < y < 1 \\ 0 & \text{otherwise} \end{cases}
$$

Remark:

- *•* Find *k*.
- *•* Compute the marginal probability density function of *X* and *Y* .

Integrate to find the value or κ
 $\kappa = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x, y) d\pi d\pi = \int_{0}^{1} \int_{0}^{1} \int_{\alpha}^{\alpha} x d\pi d\pi = \int_{0}^{1} \frac{h}{2} d\pi = 2.$ Integrate to find the value of k arginal density
 $f_X(\chi) = \int_{-\infty}^{\infty} f(\gamma, \gamma) d\gamma = \int_{0}^{1} f(\gamma, \gamma) d\gamma$
 $= \int_{0}^{1} 2\chi d\gamma$ --- if $\chi \in (0,1)$

RONTO

RONTO **Marginal density**

$$
\int_{0}^{2x} 2x - 1f \pi E(0,1)
$$

$$
\int_{0}^{2x} 0 - 1f \pi E(0,1)
$$

$$
\int_{0}^{1} 2x dx - 1f \pi E(0,1)
$$

$$
= \int_{0}^{1} 2x dx - 1f \pi E(0,1)
$$

$$
= \int_{0}^{1} 2x dx - 1f \pi E(0,1)
$$

$$
= \int_{0}^{1} 2x dx - 1f \pi E(0,1)
$$

$$
-\begin{cases} 1 & \text{if } n \in \mathbb{Z} \setminus \{0, 1\} \\ 0 & \text{if } n \in (0, 1) \end{cases}
$$

Recap: independence of random variables

Corollary of independence

If X_1, \dots, X_n are random variables, then X_1, X_2, \dots, X_n are independent if

$$
P(X_1 \leq x_1, \cdots, X_n \leq x_n) = \prod_{i=1}^n P(X_i \leq x_i)
$$

(7.4) The function:
$$
P(X_i \in A_1, \dots, X_k \in A_k) = \frac{P_1}{P_2!} (P(X_i \in A_i))
$$

for $A_i \in R$.

Recap: independence of random variables

Corollary of independence

If X_1, \dots, X_n are random variables, then X_1, X_2, \dots, X_n are independent if

$$
P(X_1 \leq x_1, \cdots, X_n \leq x_n) = \prod_{i=1}^n P(X_i \leq x_i)
$$

Remark:

Suppose X_1, \dots, X_n can only take values from $\{a_1, \dots\}$, then X_i 's are independent if

$$
P(\bigcap\{X_i=a_i\})=\prod_{i=1}^n P(X_i=a_i).
$$

 $AB + AB + AB + AB$ July 16, 2024 11 / 24

Remark:

This is equivalent to check whether the joint pmf is always the product of the corresponding marginal pmf.

Generalize this to the continuous version:

Remark:

This is equivalent to check whether the joint pmf is always the product of the corresponding marginal pmf.

Generalize this to the continuous version:

Independence of continuous random variables

Suppose X_1, \dots, X_n are continuous random variables, then X_i 's are independent if

$$
f_{(X_1,\dots,X_n)}(x_1,x_2,\dots,x_n)=\prod_{i=1}^n f_{X_i}(x_i).
$$

Conditional distribution

Remark:

Given joint and marginal distributions, consider the conditional behaviour:

イロト イ部 トイヨ トイヨト 299 B. July 16, 2024 13 / 24

Conditional distribution

Remark:

Given joint and marginal distributions, consider the conditional behaviour:

Conditional distribution

For random variables X and Y, the conditional distribution of Y given $X = x$ is defined by ibution of Y g
<u>[P(Y=3 a A X=x)</u>
[p(x=x)

• Discrete case

In distributions, consider the con-
tion

$$
X
$$
 and Y , the conditional distribution of Y given

$$
\underbrace{p(\overline{y} \rightarrow \Delta X) \cdot \Delta Y}_{[0](X \subseteq X)}
$$

$$
PY|X=x(y) = \underbrace{p(Y=y | X=x)}_{YX} = \underbrace{px, Y(x,y)}_{pX(X)}.
$$

• Continuous case

$$
f_{Y|X}(y \mid x) = \frac{f_{X,Y}(x,y)}{f_X(x)}.
$$

Conditional distribution

Remark:

Another look at independence:

• Discrete case:

X and *Y* are independent \Leftrightarrow $p_{Y|X=x}(y) = p_Y(y), \quad \forall x, y$ \Leftrightarrow $p_X \gamma(x, y) = p_X(x) p_Y(y), \quad \forall x, y.$

• Continuous case:

X and *Y* are independent \Leftrightarrow $f_{Y|X}(y | x) = f_Y(y), \quad \forall x, y$ \Rightarrow $f_{X,Y}(x, y) = f_X(x) f_Y(y), \quad \forall x, y.$

> $\mathbb{B}^{\mathbb{C}}\times \mathbb{R}^{\mathbb{C}}\times \mathbb{R}^{\mathbb{C}}\times \mathbb{R}^{\mathbb{C}}$ July 16, 2024 14 / 24

 299

Suppose we know the joint distribution of (*X, Y*), what is the distribution of $Z = X + Y$? **nctions c**
Suppose we
 $Z = X + Y$
• Discret

• Discrete case

$$
\mathbb{P}(Z=z)=\sum_{x+y=z}\mathbb{P}(X=x,Y=y)
$$

• Continuous case

$$
\mathbb{P}(Z \leq z) = \int_{x+y\leq z} f_{X,Y}(x,y) \, dx dy
$$

Remark:

This can be simplified in the independent case.

Convolutions of independent random variables

Suppose *X* and *Y* are independent, then for $Z = X + Y$, **nctions of random vari-**
Convolutions of independent r
Suppose *X* and *Y* are independ
• Discrete case
 $\mathbb{P}(Z = R)$

• Discrete case

$$
\mathbb{P}(Z=z)=\sum_{k=-\infty}^{\infty}\mathbb{P}(X=k)\mathbb{P}(Y=z-k).
$$

• Continuous case

$$
f_Z(z) = \int_{-\infty}^{\infty} f_X(x) f_Y(z-x) dx
$$

Convolutions of independent random variables

\nSuppose X and Y are independent, then for
$$
Z = X + Y
$$
,

\n\n- Discrete case
\n- $$
\mathbb{P}(Z = z) = \sum_{k=-\infty}^{\infty} \mathbb{P}(X = k) \mathbb{P}(Y = z - k).
$$
\n- Continuous case
\n- $$
f_Z(z) = \int_{-\infty}^{\infty} f_X(x) f_Y(z - x) dx
$$
\n
\nSketch of proof:
$$
\left[\mathbb{P}(\frac{Q \cdot z}{z}) - \sum_{\substack{\gamma \neq y \cdot z \\ \gamma \neq y \cdot z}} \frac{\mathbb{P}(\sqrt{x - \gamma}, \sqrt{x - \gamma})}{\sqrt{x - \gamma}} \right]
$$

\nSubstituting the values of z and z and z are not independent.

\nSubstituting the values of z and z and z are not independent.

\nSubstituting the values of z and z and z are not independent.

\nSubstituting the values of z and z and z are not independent.

\nSubstituting the values of z and z and z are not independent.

\nSubstituting the values of z and z and z are not independent.

\nSubstituting the values of z and z and z are not independent.

\nSubstituting the values of z and z and z are not independent.

\nSubstituting the values of z and z and z are not independent.

\nSubstituting the values of z and z are not independent.

\nSubstituting the values of z and z are not independent.

\nSubstituting the values of z and z are not independent.

\nSubstituting the values of z and z are not independent.

\nSubstituting the values of z and z and z are not independent.

\nSubstituting the values of <

$$
= \sum_{\chi} |P(\chi = \chi) | P(\chi = 2-\chi)
$$

Consider a function of random variable, and try to obtain the corresponding distribution function.

Multivariate change-of-variables formula

Suppose **X** is an *n*-dimensional random variable with joint density $f_\mathbf{X}(\mathbf{x})$. If $\mathbf{Y} = H(\mathbf{X})$, where *H* is a bijective, differentiable function, then **Y** has density $g_Y(y)$: ler a functic
ution functi
variate chan
se **X** is an *t*
H is a bijec g
 $Y = H(X)$

$$
g(\mathbf{y}) = f\left(H^{-1}(\mathbf{y})\right)\left|\det\left[\left.\frac{dH^{-1}(\mathbf{z})}{d\mathbf{z}}\right|_{\mathbf{z}=\mathbf{y}}\right]\right|
$$

with the differential regarded as the Jacobian of $H(\cdot)$, evaluated at **y**. -

Consider a function of random variable, and try to obtain the corresponding distribution function.

Multivariate change-of-variables formula

Suppose **X** is an *n*-dimensional random variable with joint density $f_X(x)$. If **Y** = $H(X)$, where *H* is a bijective, differentiable function, then **Y** has density $g_Y(y)$:

$$
g(\mathbf{y}) = f\left(H^{-1}(\mathbf{y})\right)\left|\det\left[\left.\frac{dH^{-1}(\mathbf{z})}{d\mathbf{z}}\right|_{\mathbf{z}=\mathbf{y}}\right]\right|
$$

 $\mathbf{A} = \mathbf{A} \oplus \mathbf{A} \oplus \mathbf{A} \oplus \mathbf{A} \oplus \mathbf{A} \oplus \mathbf{A}$ July 16, 2024 17 / 24

with the differential regarded as the Jacobian of $H(\cdot)$, evaluated at **y**.

Remark: Bijective property is important.

Special case of 2-dimensional vectors

2-dimensional change-of-variables formula

Suppose $X = (X_1, X_2)$ with joint density $f_{X_1, X_2}(x_1, x_2)$. If $Y_1 = H_1(X_1, X_2)$, $Y_2 = H_2(X_1, X_2)$, where *H* is a bijective, differentiable function, then **Y** = (Y_1, Y_2) has density $g_Y(y_1, y_2)$:

g(*y*1*, y*2) = *fX*1*,X*² *H*¹ ¹ (*y*1*, ^y*2)*, ^H*¹ ² (*y*1*, y*2) @*H*¹ 1 @*y*¹ @*H*¹ 2 @*y*² @*H*¹ 1 @*y*² @*H*¹ 2 @*y*¹ *.* - Jacobian

July 16, 2024 18 / 24

Remark:

Remark:

Every continuous bijective function from $\mathbb R$ to $\mathbb R$ is strictly monotonic.

 299 D. July 16, 2024 19 / 24

Remark:

Every continuous bijective function from $\mathbb R$ to $\mathbb R$ is strictly monotonic.

Special case of 1-dimensional random variable: generalize to monotonic functions

Univariate change-of-variables formula

Let $g : \mathbb{R} \to \mathbb{R}$ be a monotonic function on the support of $f_X(x)$, then for $Y = g(X)$, the density is:

riables formula

\natomic function on the support of
$$
f_X(x)
$$
.

\n
$$
f_Y(y) = f_X(g^{-1}(y)) \left| \frac{d}{dy}(g^{-1}(y)) \right|.
$$
\nThen, the equation is:

\n
$$
f_X(x) = \frac{f_X(x) \cdot f_Y(x)}{x}
$$

Jacobian ,

July 16, 2024 19 / 24

Proof of univariate change-of-variable formula:

Assim
$$
\hat{\beta}
$$
 : monotone, continuous, incrency

\n
$$
\int_{-\infty}^{\infty} f_{\mathcal{A}}(\hat{\beta}) d\hat{\beta} = \left[P(\vec{\alpha}, \hat{\beta}) \right]
$$
\n
$$
= \left[P(\vec{\alpha}, \hat{\beta}) \right]
$$
\n
$$
= \left[P(\vec{\alpha}, \hat{\beta}) \right]
$$
\n
$$
= \left[P(\vec{\alpha}, \hat{\beta}) \right]
$$

KID KARA KE KIEK E KORO July 16, 2024 20 / 24

= $\int_{-\infty}^{\infty} f_{x}(x)dx$
 $\begin{bmatrix} \cosh(x) & \sinh(x) \\ \cos(x) & \sinh(x) \end{bmatrix}$
 $\chi = 2^{\pi} (2^{-})$ $d\chi = \frac{1}{\alpha^{2}} 2^{\pi} (2^{-})$ = $\int_{-\infty}^{y_{2}} f_{x}(f^{(3)}) \cdot \left(\frac{f}{dy}f^{(3)}(f)\right) dy$
 $f_{7}(2)$ desived formula follows. Hun $Y = J(X)$ M_{x} on \mathbb{R} M_{γ} on P Relationship hetween these are given by change of variables formula.

Order statistics:

Reordering index of Ki

For random variables X_1, X_2, \cdots, X_n , the order statistics are $X_{(1)} \le X_{(2)} \le \cdots X_{(n)}$.

Cumulative distribution functions of order statistics

Consider the case where X_i 's are independent identically distributed (i.i.d.) samples with cumulative distribution $F_X(x)$, then the CDF of $X_{(r)}$ satisfies

From variables

\n
$$
X_1, X_2, \cdots, X_n
$$
\nthe order statistics are

\n
$$
X_{(1)} \leq X
$$
\ntion functions of order statistics

\nHere

\n
$$
X_i
$$
\n's are independent identically distributed (bution

\n
$$
F_X(x)
$$
\n, then the CDF of

\n
$$
X_{(r)}
$$
\nsatisfies

\n
$$
F_{X_{(r)}}(x) = \sum_{j=r}^{n} {n \choose j} [F_X(x)]^j [1 - F_X(x)]^{n-j},
$$
\nbability density function is

\n
$$
= \frac{n!}{(r-1)!(n-r)!} f_X(x) [F_X(x)]^{r-1} [1 - F_X(x)]^n
$$

the corresponding probability density function is

$$
f_{X_{(r)}}(x) = \frac{n!}{(r-1)!(n-r)!} f_X(x) [F_X(x)]^{r-1} [1 - F_X(x)]^{n-r}.
$$

Special cases of $X_{(1)}$ and $X_{(n)}$:

$$
F_{X_{(n)}}(x) = \mathbb{P}(\max\{X_1, ..., X_n\} \le x) = [F_X(x)]^n,
$$

\n
$$
F_{X_{(1)}}(x) = \mathbb{P}(\min\{X_1, ..., X_n\} \le x) = 1 - [1 - F_X(x)]^n.
$$

\n
$$
= \left[-\bigcap_{x \in X} \{x_1, ..., x_n\} \le x\right)
$$

Remark:

For continuous random variable, taking derivatives to obtain the probability density function.

$$
F_{X_{(r)}}(x) = \mathbb{P}(\underset{\longleftrightarrow}{\underbrace{X_{(r)}} \in x}
$$

\n $\xrightarrow{L} rH_{x}$ *smallcut* $X_{\tilde{c}} \in x$
\n \Leftrightarrow *How are* $\det \left\{ x \cdot f^{a} Y, X_{\tilde{c}} \leq x \right\}$

$$
= \sum_{\substack{j=1\\j\neq i}}^{n} \left\{ P\left(\begin{array}{ccc} H_{\text{true}} & \text{and } \text{exactly} & j \end{array}, X_{i}^{1} \leq x \right) \right\}
$$

$$
= \sum_{\substack{j=1\\j\neq i}}^{n} {n \choose r} F_{k}(x)^{j} \left(1-F_{k}(x)\right)^{n-j}
$$

$$
\underbrace{\text{a-photon}}_{\text{of choff's}} \int \text{cM of } n.
$$

Problem Set

Problem 1: Show that the probability density function of normal distribution $N(\mu, \sigma^2)$ integrates to 1.

(Hint: consider two normal random variables *X, Y*)

Problem 2: Prove that for *X* with density function $f_X(x)$, the density function of $v = X^2$ is $f_Y(y) = \frac{1}{2\sqrt{y}}(f_X(-\sqrt{y}) + f_X(\sqrt{y})), \quad y \ge 0.$

(Hint: start by considering the CDF)

Problem Set

Problem 3: Suppose X_1, \dots, X_n are i.i.d. sample following Uniform[0, 1] distribution, find the joint probability density function of $(X_{(1)}, X_{(n)})$. (Hint: start by considering the CDF)

