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Recap

Learnt in last module:

® Joint and marginal distributions

> Joint cumulative distribution function

> Independence of continuous random variables
® Functions of random variables

> Convolutions

> Change of variables
> Order statistics
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Outline

® Moments

> Expectation, Raw moments, central moments
> Moment-generating functions

® Change-of-variables using MGF
> Gamma distribution
> Chi square distribution

e Conditional expectation

> Law of total expectation
> Law of total variance
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Moments

Intuition: How do the random variables behave on average?
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Moments

Intuition: How do the random variables behave on average?

Expectation

Consider a random vector X and function g(-), the expectation of g(X) is defined by
E(g(X)), where

® Discrete random vector

E(g(X)) = Z g(x)px(x);

e Continuous random vector in R”

Be00) = [ &9 dF) = [ o) o
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Moments

Examples (random variable)
e X~ Bernoulli(p): E(X)=p-1+(1—p)-0=p.
e X~ N(0,1):

(0.9}
E(X) = / X exp(——=) dx=0.
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Moments

Examples (random variable)
e X~ Bernoulli(p): E(X)=p-1+(1—p)-0=p.
e X~ N(0,1):

E(X) = /oo X exp(——=) dx=0.

Examples (random vector)
® X; ~ Bernoulli(p;), i=1,2:

E (%0, 2)") = ((E().ECE)T) = (pr,p2) "
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Moments

Properties:
e E(X+ YY) =E(X)+E(Y);
e E(aX+ b) = aE(X) + b;
e E(XY) = E(X)E(Y), when X, Y are independent.

Proof of the first property:
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Moments

Raw moments

Consider a random variable X, the k-th (raw) moment of X is defined by E(X*), where

E(X9) = 3 px(x)

® Discrete random variable

e Continuous random variable

E(XF) = / XK dF(x) / XK fx(x)

Remark:
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Moments

Central moments

Consider a random variable X, the k-th central moment of X is defined by

E((X - E(X))¥).

Remark:
® The first central moment is 0

® Variance is defined as the second central moment.

The variance of a random variable X is defined as

Var(X) = E((X - E(X))*) = E(X*) — (E(X))*.
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Moments

Another look at the moments:

Moment generating function (1-dimensional)

For a random variable X, the moment generating function (MGF) is defined as

2E(X?) N BE(X3) . t"E(X™) N
2! 3! n!

Mx(t) = E [efx] — 1+ tB(X) +
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Moments

Another look at the moments:

Moment generating function (1-dimensional)

For a random variable X, the moment generating function (MGF) is defined as

2E(X?) N BE(X3) . t"E(X™) N
2! 3! n!

Mx(t) = E [efx] — 1+ tB(X) +

Compute moments based on MGF:

Moments from MGF

]E(Xk) = WMX(t)h:O'
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Moments

Relationship between MGF and probability distribution:
MGF uniquely defines the distribution of a random variable.
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Moments

Relationship between MGF and probability distribution:
MGF uniquely defines the distribution of a random variable.

Example:
e X ~ Bernoulli(p)

Mx(t) =E(e”) =& (1—p)+ €' p=pe+1—p.

e Conversely, if we know that

it shows Y ~ Bernoulli(p = 3).
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Change-of-variables using MGF

Intuition: To get the distribution of a transformed random variable, it suffices to find
its MGF first.

Properties:
o Y =aX+ b, My(t) = E(et(?X+b)) = etb My (at).
® Xi,---, X, independent, Y=>"", X;, then My(t) = []_; Mx,(t).
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Change-of-variables using MGF

Intuition: To get the distribution of a transformed random variable, it suffices to find
its MGF first.
Properties:

o Y =aX+ b, My(t) = E(et(?X+b)) = etb My (at).

® Xi,---, X, independent, Y=>"", X;, then My(t) = []_; Mx,(t).

Remark:
MGF is a useful tool to find the distribution of some transformed random variables,
especially when
® The original random variable follows some special distribution, so that we already
know / can compute the MGF.

® The transformation on the original variables is linear, say ) aiX;.
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Change-of-variables using MGF

Example: Gamma distribution

X~ T (e, B), —
—lg—Bxpa
M)

Compute the MGF of X ~ I'(«, ) (details omitted),

fxa,B) =

for x>0 «,8>0.

Mx(t) = (1 - ;) for t < /3, does not exist for t > 3.
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Change-of-variables using MGF

Example: Gamma distribution

Observation:
The two parameters «, 8 play different roles in variable transformation.

® Summation:
If Xi ~ T'(aj, ), and Xj's are independent, then T =" Xi~ (3>, 3).
If Xi ~ Exp()) (this is equivalently I'((a; = 1, 8 = \)) distribution), and Xj's are
independent, then T= )", X; ~ I'(n, A).

® Scaling:
If X ~ (v, B), then Y= cX ~T(a, ).
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Change-of-variables using MGF

Example: \? distribution

x? distribution
If X~ N(0,1), then X2 follows a x?(1) distribution.

Find the distribution of x2(1) distribution

¢ From PDF: (Module 4, Problem 2)
For X with density function fx(x), the density function of Y= X? is

frly) = \[( x(=vy) + &), y=0,

this gives
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Change-of-variables using MGF

Find the distribution of x?(1) distribution (continued)

e From MGF:

dx

M0 = B(eX) = [~ ep(0d)—enl-)

V2r
-/ FX"( u—x22>> i
1

1—2t_/ N(0, (1 —2t)71) dx, t<§

—(1-2t)"2,

._\
I\)M—A

By observation, x*(1) = (3, 3).
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Change-of-variables using MGF

Generalize to the x?(d) distribution

x?(d) distribution

If Xj,i=1,---,dare i.i.d N(0,1) random variables, then 3¢ X2 ~ x2(d).

By properties of MGF, x?(d) = F(g, %) and this gives the PDF of x?(d) distribution

xg 1 7%
——  forx>0.
257(9)

NIVERSITY OF
?.9 TORONTO
July 17, 2024 16 /22



Conditional expectation

From expectation to conditional expectation:
How will the expectation change after conditioning on some information?
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Conditional expectation

From expectation to conditional expectation:
How will the expectation change after conditioning on some information?

Conditional expectation

If X and Y are both discrete random vectors, then for function g(+),

® Discrete:

E(g(X) | V=)= > a(pxy—(x) = > &) P(XP(:YX;Yy): )

e Continuous:

Be() | Y= = [ " )= / " ey y)dx.

—o0 fY(y) —00
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Conditional expectation

Properties:
e |f X and Y are independent, then

E(X|Y=y)=E(X).

e If X is a function of Y, denote X = g(Y), then

E(X|Y=y)=gly)

Sketch of proof:
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Conditional expectation

Remark:
By changing the value of Y=y, E(X| Y =y) also changes, and E(X| Y) is a random
variable (the randomness comes from Y).
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Conditional expectation

Remark:
By changing the value of Y=y, E(X| Y =y) also changes, and E(X| Y) is a random
variable (the randomness comes from Y).

Total expectation and conditional expectation

Law of total expectation

E(E(X]Y)) = E(X)

Proof: (discrete case)

= UNIVERSITY OF
& TORONTO
July 17, 2024 19/22



Conditional expectation

Total variance and conditional variance

Conditional variance

Var(Y| X) = E(Y? | X) — (E(Y| X))
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Conditional expectation

Total variance and conditional variance

Conditional variance

Var(Y| X) = E(Y? | X) — (E(Y| X))

Law of total variance

Var(Y) = E[Var(Y | X)] + Var(E[Y| X]).

Remark:
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Problem Set

Problem 1: Prove that E(XY) = E(X)E(Y) when X and Y are independent.
(Hint: simply consider the continuous case, use the independent property of the joint
pdf)

Problem 2: For X ~ Uniform(a, b), compute E(X) and Var(X).

Problem 3: Determine the MGF of X ~ N (1, 02).
(Hint: Start by considering the MGF of Z ~ N(0,1), and then use the transformation
X=p+o2)
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Problem Set

Problem 4: The citizens of Remuera withdraw money from a cash machine according
to X = 50, 100, 200 with probability 0.3,0.5,0.2, respectively. The number of
customers per day has the distribution N ~ Poisson(A = 10). Let

Ty = X1+ X2+ ---+ Xy be the total amount of money withdrawn in a day, where
each X; has the probability above, and Xj's are independent of each other and of N.

e Find E(Ty),
¢ Find Var(Ty).
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