

Statistical Sciences

DoSS Summer Bootcamp Probability Module 5

Ichiro Hashimoto

University of Toronto

July 17, 2024

□ ▶ < @ ▶ < ≧ ▶ < ≧ ▶ ≧ < ♡ < ♡ July 17, 2024 1/22

Recap

Learnt in last module:

- Joint and marginal distributions
 - ▷ Joint cumulative distribution function
 - Independence of continuous random variables
- Functions of random variables
 - \triangleright Convolutions
 - \triangleright Change of variables
 - Order statistics

Outline

• Moments

- ▷ Expectation, Raw moments, central moments
- Moment-generating functions
- Change-of-variables using MGF
 - ▷ Gamma distribution
 - > Chi square distribution
- Conditional expectation
 - $\,\triangleright\,$ Law of total expectation
 - $\,\triangleright\,$ Law of total variance

Intuition: How do the random variables behave on average?

<□ ▶ < □ ▶ < ■ ▶ < ■ ▶ < ■ ▶ < ■ ▶ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■

Intuition: How do the random variables behave on average?

Expectation

Consider a random vector X and function $\underline{g(\cdot)}$, the expectation of $\underline{g(X)}$ is defined by $\mathbb{E}(\underline{g(X)})$, where

• Discrete random vector

$$\mathbb{E}(g(X)) = \sum_{x} g(x) p_X(x),$$

• Continuous random vector in \mathbb{R}^n

$$\mathbb{E}(g(X)) = \int_{\mathbb{R}^n} g(x) \, dF(x) = \int_{\mathbb{R}^n} \underbrace{f_X(x)}_{dx, dx} dx.$$

Hx)

Recall the definite of IEX

$$[E X = \lim_{n \to \infty} \sum_{k=\infty}^{\infty} \frac{k_k}{n} \left[P\left(\begin{array}{c} k \in \left(\frac{k_k}{n}, \frac{k_{\tau_1}}{n}\right] \right) \\ = \left[\begin{array}{c} \chi^{-1}\left(\frac{k_k}{n}, \frac{k_{\tau_1}}{n}\right] \right] \in F \text{ s-algebra.} \end{cases}$$

To note:
$$\mathbb{E} g(x)$$
 volid, we need $g(x)$ to be a random markele.
That evens $g(x)^{-1}(B) \in \overline{F}$ for any Band with B .
Note $KH = g(x)^{-1}(B) = X^{-1}(g^{-1}(B))$.
So we need E has $X^{-1}(Z^{-1}(B)) \in \overline{F}$ for any $B \in \mathbb{R}$.
 $\begin{bmatrix} Y^{-1}(F(G)) & X & g^{-1}(B) & g & B \end{bmatrix}$
A some $g^{-1}(B) \in \mathbb{R}^{n}$ for any $B \in \mathbb{R}$.
Thus, since Y is a random meter and $F^{-1}(B) \in \mathbb{R}^{n}$,
we have $X^{-1}(g^{-1}(B)) \in \overline{F}$.
Thus, $\mathbb{E} g(X)$ can be well-defined.
Det (measamble function)
A map $f: (\Omega, \overline{F}) \rightarrow (\overline{\Omega}, \overline{F})$ is measurable
if $g^{-1}(A) \in \overline{F}$ for any $A \in \overline{F}$.
Cor $1 \neq g: (\mathbb{R}^{n}, \mathbb{R}^{n}) \rightarrow (\mathbb{R}, \mathbb{R})$ is measurable
and $X: (\Omega, \overline{F}) \rightarrow (\mathbb{R}^{n}, \mathbb{R}^{n})$ is a random vector
Have $g(X)$ is a random vector.
 $\mathbb{E} g(X)$

Q. Whit feetim is measurable?
1) Indicator faction
$$\underbrace{4[x \in A]}_{= \begin{cases} 1 & \text{if } x \in A \\ 0 & \text{if } x \in A \end{cases}}_{= \begin{cases} 0 & \text{if } x \in A \\ 0 & \text{if } x \in A \end{cases}}$$

(Proof shotch)
 $\underbrace{4[x \in A]^{-1}(B)}_{= \begin{cases} A \\ A^{C} \\ R^{m} \end{cases}}$

Examples (random variable)

- $X \sim \text{Bernoulli}(p)$: $\mathbb{E}(X) = p \cdot 1 + (1-p) \cdot 0 = p$.
- $X \sim \mathcal{N}(0,1)$:

$$\mathbb{E}(X) = \int_{-\infty}^{\infty} x \frac{1}{\sqrt{2\pi}} exp(-\frac{x^2}{2}) dx = 0.$$

= 001

Examples (random variable)

- $X \sim \text{Bernoulli}(p)$: $\mathbb{E}(X) = p \cdot 1 + (1-p) \cdot 0 = p$.
- $X \sim \mathcal{N}(0,1)$:

$$\mathbb{E}(X) = \int_{-\infty}^{\infty} x \frac{1}{\sqrt{2\pi}} exp(-\frac{x^2}{2}) dx = 0.$$

Examples (random vector)

•
$$X_i \sim \text{Bernoulli}(p_i), i = 1, 2$$
:

$$\mathbb{E}\left((X_1,X_2^2)^{\top}\right) = \left((\mathbb{E}(X_1),\mathbb{E}(X_2^2))^{\top}\right) = (p_1,p_2)^{\top}.$$

Properties:

- $\mathbb{E}(X + Y) = \mathbb{E}(X) + \mathbb{E}(Y);$ $\mathbb{E}(aX + b) = a\mathbb{E}(X) + b;$
- $\mathbb{E}(XY) = \mathbb{E}(X)\mathbb{E}(Y)$, when X, Y are independent.

Proof of the first property: X, X are discrite and only take integer values Ass

$$E(xtr() = \int_{4-\infty}^{\infty} h_2 \frac{P(xtr(-L))}{p_2}$$
$$= \int_{4-\infty}^{\infty} h_2 \int_{j=-\infty}^{\infty} P(x-j) \frac{Y}{p_2} \frac{A-j}{p_1}$$
$$\left(\int_{1}^{\infty} = h_2 \int_{\infty}^{\infty} h_2^2 \ell_1 \frac{A-j}{p_2} \right)$$

E(axtbi) = a ExtbEi

F rs linear. C = C.

FC

$$= \sum_{l=-\infty}^{\infty} (l+l) \sum_{j=-\infty}^{\infty} |P(x=j, Y:l)|$$

$$= \sum_{l=-\infty}^{\infty} \sum_{j=-\infty}^{\infty} l |P(x=j, Y=l)|$$

$$+ \sum_{l=-\infty}^{\infty} \sum_{j=-\infty}^{\infty} j P(x=j, Y=l)|$$

$$= \sum_{l=-\infty}^{\infty} l |P(Y=l) + \sum_{j=-\infty}^{\infty} \sum_{l=-\infty}^{\infty} |P(x=j, Y=l)|$$

$$= \sum_{l=-\infty}^{\infty} l |P(Y=l) + \sum_{j=-\infty}^{\infty} \sum_{l=-\infty}^{\infty} |P(x=j, Y=l)|$$

$$= \int_{\mathbb{R}}^{\infty} \mathcal{L} P(\tilde{Y} = \mathcal{L}) + \int_{\tilde{y} = \infty}^{\infty} \tilde{y} P(X = \tilde{y})$$

Raw moments

Consider a random variable X, the k-th (raw) moment of X is defined by $\mathbb{E}(X^k)$, where

• Discrete random variable

$$\mathbb{E}(X^k) = \sum_{x} x^k p_X(x)$$

• Continuous random variable

$$\mathbb{E}(X^k) = \int_{-\infty}^{\infty} x^k \, dF(x) = \int_{-\infty}^{\infty} x^k f_X(x) \, dx.$$

Remark:

Central moments

Consider a random variable X, the k-th central moment of X is defined by $\mathbb{E}((X - \mathbb{E}(X))^k)$.

Remark:

- The first central moment is 0
- Variance is defined as the second central moment.

Variance

The variance of a random variable X is defined as

$$\operatorname{Var}(X) = \mathbb{E}((X - \mathbb{E}(X))^2) = \mathbb{E}(X^2) - (\mathbb{E}(X))^2.$$

Another look at the moments:

Moment generating function (1-dimensional)

For a random variable X, the moment generating function (MGF) is defined as

$$M_X(t) = \mathbb{E}\left[e^{tX}\right] = 1 + t\mathbb{E}(X) + \frac{t^2\mathbb{E}(X^2)}{2!} + \frac{t^3\mathbb{E}(X^3)}{3!} + \cdots + \frac{t^n\mathbb{E}(X^n)}{n!} + \cdots$$

$$\left(\frac{d}{dt}\right)^{h} M_{r}(t) = E X^{h} h moment$$

Another look at the moments:

Moment generating function (1-dimensional)

For a random variable X, the moment generating function (MGF) is defined as

$$M_X(t) = \mathbb{E}\left[e^{tX}
ight] = 1 + t\mathbb{E}(X) + rac{t^2\mathbb{E}(X^2)}{2!} + rac{t^3\mathbb{E}(X^3)}{3!} + \cdots + rac{t^n\mathbb{E}(X^n)}{n!} + \cdots$$

Compute moments based on MGF:

Moments from MGF

$$\mathbb{E}(X^k) = rac{d^k}{dt^k} M_X(t)|_{t=0}.$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Relationship between MGF and probability distribution: MGF uniquely defines the distribution of a random variable.

< □ ▶ < □ ▶ < ■ ▶ < ■ ▶ < ■ ▶ < ■ ▶ July 17, 2024 10 / 22

Relationship between MGF and probability distribution: MGF uniquely defines the distribution of a random variable.

Example:

• $X \sim Bernoulli(p)$

$$M_X(t)=\mathbb{E}(e^{tX})=e^0\cdot(1-p)+e^t\cdot p=pe^t+1-p.$$

• Conversely, if we know that

$$M_{\mathbf{Y}}(t) = \frac{1}{3}e^t + \frac{2}{3},$$

it shows $Y \sim \text{Bernoulli}(p = \frac{1}{3})$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

10/22

July 17, 2024

Intuition: To get the distribution of a transformed random variable, it suffices to find $= \mathbb{E} e^{atx} \cdot e^{tb} = e^{tb} \mathbb{E} e^{(ct)x}$ $= M_x (at)$ its MGF first.

Properties:

- Y = aX + b, $M_Y(t) = \mathbb{E}(e^{t(aX+b)}) = e^{tb}M_X(at)$.
- X_1, \dots, X_n independent, $Y = \sum_{i=1}^n X_i$, then $M_Y(t) = \prod_{i=1}^n M_{X_i}(t)$.

$$M_{\chi}(t) = \mathbb{E} e^{t\gamma} = \mathbb{E} e^{ep} \left(t \int_{0}^{\infty} x_{0} \right)$$
$$= \mathbb{E} \inf_{\tau} e^{ep}(tx_{0}) = \inf_{\tau} \mathbb{E} e^{ep}(tx_{0})$$
$$\underbrace{H_{\chi_{0}}(t)}$$

Intuition: To get the distribution of a transformed random variable, it suffices to find its MGF first.

Properties:

- Y = aX + b, $M_Y(t) = \mathbb{E}(e^{t(aX+b)}) = e^{tb}M_X(at)$.
- X_1, \dots, X_n independent, $Y = \sum_{i=1}^n X_i$, then $M_Y(t) = \prod_{i=1}^n M_{X_i}(t)$.

Remark:

 MGF is a useful tool to find the distribution of some transformed random variables, especially when

- The original random variable follows some special distribution, so that we already know / can compute the MGF.
- The transformation on the original variables is linear, say $\sum_i a_i X_i$.

Example: Gamma distribution

$$X \sim \Gamma(\alpha, \beta),$$

 $f(x; \alpha, \beta) = \frac{x^{\alpha-1}e^{-\beta x}\beta^{\alpha}}{\Gamma(\alpha)} \quad \text{ for } x > 0 \quad \alpha, \beta > 0.$

Compute the MGF of $X \sim \Gamma(\alpha, \beta)$ (details omitted),

$$M_X(t) = \left(1 - rac{t}{eta}
ight)^{-lpha}$$
 for $t < eta,$ does not exist for $t \geq eta.$

< □ ▶ < □ ▶ < ■ ▶ < ■ ▶ < ■ ▶ < ■ ▶ < ■ > ○ Q (~ July 17, 2024 12 / 22

Example: Gamma distribution

Observation:

The two parameters α,β play different roles in variable transformation.

• Summation:

If $X_i \sim \Gamma(\alpha_i, \beta)$, and X_i 's are independent, then $T = \sum_i X_i \sim \Gamma(\sum_i \alpha_i, \beta)$. If $X_i \sim Exp(\lambda)$ (this is equivalently $\Gamma((\alpha_i = 1, \beta = \lambda))$ distribution), and X_i 's are independent, then $T = \sum_i X_i \sim \Gamma(n, \lambda)$.

• Scaling:

If
$$X \sim \Gamma(\alpha, \beta)$$
, then $Y = cX \sim \Gamma(\alpha, \frac{\beta}{c})$.

 $\begin{aligned} \text{Lf } & \text{Ki} \sim \Gamma(di, B), \quad \text{Kis one oudeput,} \\ \text{recall } & \text{Mxi}(t) = (1 - \frac{1}{73})^{-di} \\ \text{So, for } & \text{Ki} = \sum_{c=1}^{\infty} x_c, \\ & \text{My}(t) = \lim_{c \neq i} M_{x_c}(t) \\ & = \lim_{c \neq i} (1 - \frac{1}{5})^{-\alpha_c} \\ & = (1 - \frac{1}{53})^{-\frac{\alpha_c}{2}} \\ & \text{By the uniqueness property of MGF,} \end{aligned}$

~ ~ [(Zdv, G)

Example: χ^2 distribution

$\chi^{\rm 2}$ distribution

If $X \sim \mathcal{N}(0,1)$, then X^2 follows a $\chi^2(1)$ distribution.

Find the distribution of $\chi^2(1)$ distribution

• From PDF: (Module 4, Problem 2) For X with density function $f_X(x)$, the density function of $Y = X^2$ is

$$f_Y(y) = rac{1}{2\sqrt{y}}(f_X(-\sqrt{y})+f_X(\sqrt{y})), \quad y \ge 0,$$

this gives

$$f_{Y}(y) = \frac{1}{\sqrt{2\pi}}y^{-\frac{1}{2}}exp(-\frac{y}{2}).$$

Find the distribution of $\chi^2(1)$ distribution (continued)

• From MGF:

$$\begin{aligned}
& \chi = \chi^{2} \quad \chi \sim \mathcal{N}^{(0,1)} \\
& M_{Y}(t) = \mathbb{E}(e^{tX^{2}}) = \int_{-\infty}^{\infty} exp(tx^{2}) \frac{1}{\sqrt{2\pi}} exp(-\frac{x^{2}}{2}) \, dx \\
& = \int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi}} exp\left(-\frac{x^{2}}{2(1-2t)^{-1}}\right) \, dx \quad rd(x^{2}t) \quad t < 0, \ (1-2t)^{-1} \\
& = (1-2t)^{-\frac{1}{2}} \int_{-\infty}^{\infty} \mathcal{N}(0, (1-2t)^{-1}) \, dx, \quad t < \frac{1}{2} \\
& = (1-2t)^{-\frac{1}{2}} \int_{-\infty}^{\infty} \mathcal{N}(0, (1-2t)^{-1}) \, dx, \quad t < \frac{1}{2} \\
& = (1-2t)^{-\frac{1}{2}} \int_{-\infty}^{\infty} \mathcal{N}(0, (1-2t)^{-1}) \, dx, \quad t < \frac{1}{2} \\
& = (1-2t)^{-\frac{1}{2}} \int_{-\infty}^{\infty} \mathcal{N}(0, (1-2t)^{-1}) \, dx, \quad t < \frac{1}{2} \\
& = (1-2t)^{-\frac{1}{2}} \int_{-\infty}^{\infty} \mathcal{N}(0, (1-2t)^{-1}) \, dx, \quad t < \frac{1}{2} \\
& = (1-2t)^{-\frac{1}{2}} \int_{-\infty}^{\infty} \mathcal{N}(0, (1-2t)^{-1}) \, dx, \quad t < \frac{1}{2} \\
& = (1-2t)^{-\frac{1}{2}} \int_{-\infty}^{\infty} \mathcal{N}(0, (1-2t)^{-1}) \, dx, \quad t < \frac{1}{2} \\
& = (1-2t)^{-\frac{1}{2}} \int_{-\infty}^{\infty} \mathcal{N}(0, (1-2t)^{-1}) \, dx, \quad t < \frac{1}{2} \\
& = (1-2t)^{-\frac{1}{2}} \int_{-\infty}^{\infty} \mathcal{N}(0, (1-2t)^{-1}) \, dx, \quad t < \frac{1}{2} \\
& = (1-2t)^{-\frac{1}{2}} \int_{-\infty}^{\infty} \mathcal{N}(0, (1-2t)^{-1}) \, dx, \quad t < \frac{1}{2} \\
& = (1-2t)^{-\frac{1}{2}} \int_{-\infty}^{\infty} \mathcal{N}(0, (1-2t)^{-1}) \, dx, \quad t < \frac{1}{2} \\
& = (1-2t)^{-\frac{1}{2}} \int_{-\infty}^{\infty} \mathcal{N}(0, (1-2t)^{-1}) \, dx, \quad t < \frac{1}{2} \\
& = (1-2t)^{-\frac{1}{2}} \int_{-\infty}^{\infty} \mathcal{N}(0, (1-2t)^{-1}) \, dx, \quad t < \frac{1}{2} \\
& = (1-2t)^{-\frac{1}{2}} \int_{-\infty}^{\infty} \mathcal{N}(0, (1-2t)^{-1}) \, dx, \quad t < \frac{1}{2} \\
& = (1-2t)^{-\frac{1}{2}} \int_{-\infty}^{\infty} \mathcal{N}(0, (1-2t)^{-1}) \, dx, \quad t < \frac{1}{2} \\
& = (1-2t)^{-\frac{1}{2}} \int_{-\infty}^{\infty} \mathcal{N}(0, (1-2t)^{-1}) \, dx, \quad t < \frac{1}{2} \\
& = (1-2t)^{-\frac{1}{2}} \int_{-\infty}^{\infty} \mathcal{N}(0, (1-2t)^{-1}) \, dx, \quad t < \frac{1}{2} \\
& = (1-2t)^{-\frac{1}{2}} \int_{-\infty}^{\infty} \mathcal{N}(0, (1-2t)^{-1}) \, dx$$

Generalize to the $\chi^2(d)$ distribution

$\chi^2(d)$ distribution If X_i , $i = 1, \dots, d$ are i.i.d $\mathcal{N}(0, 1)$ random variables, then $\sum_{i=1}^d X_i^2 \sim \chi^2(d)$.

By properties of MGF, $\chi^2(d) = \Gamma(\frac{d}{2}, \frac{1}{2})$, and this gives the PDF of $\chi^2(d)$ distribution

$$\frac{x^{\frac{d}{2}-1}e^{-\frac{x}{2}}}{2^{\frac{d}{2}}\Gamma(\frac{d}{2})} \quad \text{ for } x > 0.$$

From expectation to conditional expectation:

How will the expectation change after conditioning on some information?

From expectation to conditional expectation:

How will the expectation change after conditioning on some information?

Conditional expectation

If X and Y are both discrete random vectors, then for function $g(\cdot)$,

• Discrete:

$$\mathbb{E}(g(X) \mid Y = y) = \sum_{x} g(x) p_{X|Y=y}(x) = \sum_{x} g(x) \frac{P(X = x, Y = y)}{P(Y = y)}$$

• Continuous:

$$\mathbb{E}(g(X) \mid Y = y) = \int_{-\infty}^{\infty} g(x) f_{X|Y}(x|y) \mathrm{d}x = \frac{1}{f_Y(y)} \int_{-\infty}^{\infty} g(x) f_{X,Y}(x,y) \mathrm{d}x.$$

Properties:

• If X and Y are independent, then

 $\mathbb{E}(X \mid Y = y) = \mathbb{E}(X).$

• If X is a function of Y, denote X = g(Y), then

Sketch of proof:

$$\mathbb{E}(X \mid Y = y) = g(y).$$

$$\mathbb{E}\left(\mathcal{G}(Y) \mid 7 : \mathcal{F}\right)$$

due to

$$\begin{pmatrix} P_{xiz}(xiz) = P_{x}(z) \\ f_{xiz}(xiz) = f_{x}(z) \end{pmatrix}$$

Remark:

By changing the value of Y = y, $\mathbb{E}(X \mid Y = y)$ also changes, and $\mathbb{E}(X \mid Y)$ is a random variable (the randomness comes from Y).

Remark:

By changing the value of Y = y, $\mathbb{E}(X \mid Y = y)$ also changes, and $\mathbb{E}(X \mid Y)$ is a random variable (the randomness comes from Y).

Total expectation and conditional expectation

Law of total expectation

 $\mathbb{E}(\mathbb{E}(X \mid Y)) = \mathbb{E}(X)$

Total variance and conditional variance

Conditional variance

$$Var(Y \mid X) = \mathbb{E}(Y^2 \mid X) - (\mathbb{E}(Y \mid X))^2$$
.

<ロト < 団ト < 三ト < 三ト < 三ト < 三 > 三 のへで July 17, 2024 20 / 22

Total variance and conditional variance

Conditional variance

$$Var(Y \mid X) = \mathbb{E}(Y^2 \mid X) - (\mathbb{E}(Y \mid X))^2.$$

Law of total variance

$$Var(Y) = \mathbb{E}[Var(Y \mid X)] + Var(\mathbb{E}[Y \mid X]).$$

Remark:

is random wit. X

Problem Set

Problem 1: Prove that $\mathbb{E}(XY) = \mathbb{E}(X)\mathbb{E}(Y)$ when X and Y are independent. (Hint: simply consider the continuous case, use the independent property of the joint pdf)

Problem 2: For $X \sim Uniform(a, b)$, compute $\mathbb{E}(X)$ and Var(X).

Problem 3: Determine the MGF of $X \sim \mathcal{N}(\mu, \sigma^2)$. (Hint: Start by considering the MGF of $Z \sim \mathcal{N}(0, 1)$, and then use the transformation $X = \mu + \sigma Z$)

Problem Set

Problem 4: The citizens of Remuera withdraw money from a cash machine according to X = 50, 100, 200 with probability 0.3, 0.5, 0.2, respectively. The number of customers per day has the distribution $N \sim Poisson(\lambda = 10)$. Let $T_N = X_1 + X_2 + \cdots + X_N$ be the total amount of money withdrawn in a day, where each X_i has the probability above, and X_i 's are independent of each other and of N.

- Find $\mathbb{E}(T_N)$,
- Find $Var(T_N)$.

