

Statistical Sciences

DoSS Summer Bootcamp Probability Module 5

! ! |

Ichiro Hashimoto

University of Toronto

July 17, 2024

 290 4 D F July 17, 2024 1/22

Recap

Learnt in last module:

- *•* Joint and marginal distributions
	- \triangleright Joint cumulative distribution function
	- \triangleright Independence of continuous random variables
- *•* Functions of random variables
	- \triangleright Convolutions
	- \triangleright Change of variables
	- \triangleright Order statistics

Outline

• Moments

- \triangleright Expectation, Raw moments, central moments
- \triangleright Moment-generating functions
- *•* Change-of-variables using MGF
	- \triangleright Gamma distribution
	- \triangleright Chi square distribution
- *•* Conditional expectation
	- \triangleright Law of total expectation
	- \triangleright Law of total variance

Intuition: How do the random variables behave on average?

イロトメ 伊 トメ 差 トメ 差 トー 差し 299 July 17, 2024 4 / 22

Intuition: How do the random variables behave on average?

Expectation

Consider a random vector X and function $g(\cdot)$, the expectation of $g(X)$ is defined by $\mathbb{E}(g(X))$, where Example the rain

ion

a random vector

where

rete random vect $g(\cdot)$, the expectation of $g(X)$

• Discrete random vector

$$
\mathbb{E}(g(X))=\sum_{x}g(x)p_{X}(x),
$$

• Continuous random vector in
$$
\mathbb{R}^n
$$

vector in
$$
\mathbb{R}^n
$$

\n
$$
\mathbb{E}(g(X)) = \int_{\mathbb{R}^n} g(x) dF(x) = \int_{\mathbb{R}^n} f_X(x) dx.
$$

 $\mathcal{H} \mathbf{\times}$)

Recall the definition of $I E X$

\n
$$
\text{If } X = \lim_{n \to \infty} \sum_{k = 1}^{\infty} \frac{k}{n} \ln\left(\frac{k \in (\frac{A}{n}, \frac{A_{\text{ref}}}{n})}{\sqrt{n \cdot \left(\frac{A_{\text{ref}} - A_{\text{ref}}}{A_{\text{ref}}}\right)}}\right)
$$
\n

\n\n $= \left(\frac{1}{n}, \frac{A_{\text{ref}}}{A_{\text{ref}}}\right) \in F \text{ s-algebra.}$ \n

To make:
$$
\mathbf{B} \mathcal{B}(\mathbf{r})
$$
 valid, we need $\mathcal{B}(\mathbf{x})$ to be a random variable.
\nThat $\mathbf{B}(\mathbf{r})$ valid, we need $\mathcal{B}(\mathbf{x})$ to be a random variable.
\nThat $\mathcal{B}(\mathbf{r})^{-1}(\mathbf{b}) = \mathbf{r}^{-1}(\mathbf{b}^{-1}(\mathbf{b}))$
\n
$$
\mathbf{M}\mathbf{d}\mathbf{r}
$$
 Find $\mathbf{B}(\mathbf{r})^{-1}(\mathbf{b}) = \mathbf{r}^{-1}(\mathbf{b}^{-1}(\mathbf{b}))$
\nSo we need to have $\mathbf{r}^{-1}(\mathbf{b}^{-1}(\mathbf{b})) = \mathbf{r}^{-1}(\mathbf{b}^{-1}(\mathbf{b}))$
\n
$$
\mathbf{r}^{-1}(\mathbf{r}^{-1}(\mathbf{b})) = \mathbf{r}^{-1}(\mathbf{b}^{-1}(\mathbf{b}))
$$
\n
$$
\mathbf{r}^{-1}(\mathbf{b}^{-1}(\mathbf{b})) = \mathbf{r}^{-1}(\mathbf{b}^{-1}(\mathbf{b}^{-1}(\mathbf{b}))
$$
\n
$$
\mathbf{r}^{-1}(\mathbf{b}^{-1}(\mathbf{b})) = \mathbf{r}^{-1}(\mathbf{b}^{-
$$

& Whil faction is measurable ? 1) . Indicator factio EXEA] for ^A GRE is measurable · - = ^S if xA ^O if ^X & ^A (Proof shetch) & ¹¹ (xA]⁺ (B) ⁼ C A M -

2) Sample function
\n
$$
f(t) = \sum_{j=1}^{\infty} \lambda_{A} 1 [X \in A_{A}] \lambda_{A} \in R
$$

\n $\lambda_{A} \in R$
\n $\lambda_{A} \in R$
\n $\lambda_{A} \in R$
\nAnswer combination of indicator functions.
\n3) limit of simple functions are measurable
\n $\lambda_{A} \in R$

- > all pincerise continuous factions are measurable·

 A^{C}

 $\mathbb{P}_{\mathscr{P}}$

Examples (random variable)

- *•* X ∼ Bernoulli(p): E(X) = p *·* 1 + (1 − p) *·* 0 = p.
- *•* X ∼ *N* (0*,* 1):

ble)

\n
$$
\zeta = p \cdot 1 + (1 - p) \cdot 0 = p.
$$
\n
$$
\mathbb{E}(X) = \int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{x^{2}}{2}\right) dx = 0.
$$
\nand

\n
$$
\frac{1}{2} \cdot \exp\left(-\frac{x^{2}}{2}\right) = 0.
$$

⁼ odd

Examples (random variable)

- *•* X ∼ Bernoulli(p): E(X) = p *·* 1 + (1 − p) *·* 0 = p.
- *•* X ∼ *N* (0*,* 1):

$$
\mathbb{E}(X)=\int_{-\infty}^{\infty}x\frac{1}{\sqrt{2\pi}}exp(-\frac{x^2}{2}) dx = 0.
$$

Examples (random vector)

•
$$
X_i \sim \text{Bernoulli}(p_i), i = 1, 2
$$
:

$$
\mathbb{E}\left((X_1,X_2^2)^\top\right)=\left((\mathbb{E}(X_1),\mathbb{E}(X_2^2))^\top\right)=(\rho_1,\rho_2)^\top.
$$

K ロ ▶ K 個 ▶ K 로 ▶ K 로 ▶ 『로 『 YO Q @ July 17, 2024 5 / 22

Properties:

- $\mathbb{E}(X + Y) = \mathbb{E}(X) + \mathbb{E}(Y);$
- $\mathbb{E}(aX+b) = a\mathbb{E}(X) + b$;
- $E(XY) = E(X)E(Y)$, when X, Y are independent. $E(ax + bY) = aEx + bEY$
 $E cs (liney)$
 $E cs (liney)$
 $E cs = C$ $(X \text{ are independent})$

Proof of the first property:

nents
 o $E(X + Y) = E(X) + E(Y)$;
 b $E(aX + b) = aE(X) + b$;
 c $E(XY) = E(X)E(Y)$, when X, Y are independent.
 coof of the first property:

Assum X, X and X, Y are independent. Derties:
 $\mathbb{E}(X + Y) = \mathbb{E}(X) + \mathbb{E}(Y);$
 $\mathbb{E}(aX + b) = a\mathbb{E}(X) + b;$
 $\mathbb{E}(XY) = \mathbb{E}(X)\mathbb{E}(Y)$, when X, Y are independent

of of the first property:
 $\mathbb{E}(\forall x \in \mathbb{R}) = \sum_{k_1 > k_2}^{\infty} \frac{1}{k_1!} \mathbb{E}(\forall x \in \mathbb{R})$
 \mathbb $\sum_{k=1}^{\infty}$ 1/2 $[P (k + k^2 - 1)]$ $I = \sum_{4200}^{60} 12 \pi \sum_{y=0}^{10} 12 \pi \sum_{y=0}^{10} (x+y)$
 $I = \sum_{4200}^{60} 12 \pi \sum_{y=0}^{10} (x+y)$ \sum_{μ_1,ν_2,ν_3} $\frac{1}{2}$ \sum_{μ_2,ν_3} \sum_{μ_1,ν_2} \sum_{μ_2,ν_3} \sum_{μ_1,ν_2} \sum_{μ_2,ν_3} \sum_{μ_1,ν_2} \sum_{μ_1,ν_2} \sum_{μ_1,ν_2} \sum_{μ_1,ν_2} \sum_{μ_1,ν_2} \sum_{μ_1,ν_2} \sum_{μ_1,ν_2} \sum_{μ_1,ν_2 $\begin{pmatrix} h_2 & \frac{1}{j^2-\omega} & (1-\lambda^{2}) & \cdots & \frac{1}{j^2-\omega} \ & h_2 & h_2 & \cdots & \frac{1}{j^2-\omega} & \cdots & \frac{1}{j^2-\omega} \end{pmatrix}$

 $E(a \times b \times c) = a E \times b E$

 $\overline{\mathbf{F}}$ is linear.

constit

$$
= \sum_{k=-\infty}^{\infty} (kT) \sum_{j=-\infty}^{\infty} [P(k=1, Y=1)]
$$

$$
= \sum_{k=-\infty}^{\infty} \sum_{j=1}^{\infty} L [P(k=1, Y=1)]
$$

$$
+ \sum_{k=-\infty}^{\infty} \sum_{j=1}^{\infty} j [P(k=1, Y=1)]
$$

$$
= \sum_{k=-\infty}^{\infty} L [P(Y=1) + \sum_{j=1}^{\infty} j \sum_{k=-\infty}^{\infty} [P(X=1, Y=1)]
$$

$$
= \sum_{\ell=0}^{\infty} \ell P(\zeta \epsilon) + \sum_{\tilde{\ell}=0}^{\infty} \mathcal{I} P(X = \tilde{J})
$$

$$
= \mathbb{E} \left\{ \mathbf{1} + \mathbb{E} \mathbf{1} \right\}
$$

Raw moments

Consider a random variable X, the k-th (raw) moment of X is defined by $\mathbb{E}(X^k)$, where

• Discrete random variable

$$
\mathbb{E}(X^k) = \sum_{x} x^k p_X(x),
$$

• Continuous random variable

$$
\mathbb{E}(X^k)=\int_{-\infty}^{\infty}x^k\;dF(x)=\int_{-\infty}^{\infty}x^k f_X(x)\;dx.
$$

Remark:

Central moments

Consider a random variable X , the *k*-th central moment of X is defined by $\mathbb{E}((X-\mathbb{E}(X))^k).$ centra
Centra tral mo
sider a
X — E(*)*

Remark:

- The first central moment is 0
- Variance is defined as the second central moment.

Variance

The variance of a random variable X is defined as

$$
Var(X) = \mathbb{E}((X - \mathbb{E}(X))^2) = \mathbb{E}(X^2) - (\mathbb{E}(X))^2.
$$

Another look at the moments:

Moment generating function (1-dimensional)

For a random variable X, the moment generating function (MGF) is defined as
\n
$$
M_X(t) = \mathbb{E}\left[e^{tX}\right] = 1 + t\mathbb{E}(X) + \frac{t^2\mathbb{E}(X^2)}{2!} + \frac{t^3\mathbb{E}(X^3)}{3!} + \dots + \frac{t^n\mathbb{E}(X^n)}{n!} + \dots
$$

$$
\text{Sum variable } X, \text{ the moment generating function (MGF) is defined as}
$$
\n
$$
0 = \mathbb{E}\left[e^{tX}\right] = 1 + t\mathbb{E}(X) + \frac{t^2\mathbb{E}(X^2)}{2!} + \frac{t^3\mathbb{E}(X^3)}{3!} + \dots + \frac{t^n\mathbb{E}(X^n)}{n!} + \dots
$$
\n
$$
\left(\frac{d}{dt}\int_{t}^{h} M_{\gamma}(t) \Big|_{t=0} = \mathbb{E}\left[X^{\frac{\lambda_{\gamma}}{2!}} + \frac{\lambda_{\gamma}}{2!} \frac{1}{h} \operatorname{max}_{t} \frac
$$

Another look at the moments:

Moment generating function (1-dimensional)

For a random variable X , the moment generating function (MGF) is defined as

$$
M_X(t)=\mathbb{E}\left[e^{tX}\right]=1+t\mathbb{E}(X)+\frac{t^2\mathbb{E}(X^2)}{2!}+\frac{t^3\mathbb{E}(X^3)}{3!}+\cdots+\frac{t^n\mathbb{E}(X^n)}{n!}+\cdots
$$

Compute moments based on MGF:

Moments from MGF

$$
\mathbb{E}(X^k) = \frac{d^k}{dt^k} M_X(t)|_{t=0}.
$$

Relationship between MGF and probability distribution: MGF uniquely defnes the distribution of a random variable.

WGF uniquely defines the distribution of a random variable.

\nThus

\n
$$
f \downarrow h_{xx} \quad f \uparrow \quad |h_{x} \quad (H) = |M_{x} \quad (H) \quad \text{or} \quad \text{on} \quad \text{open} \quad \text{lateral} \quad \text{near} \quad 0
$$
\nThus

\n
$$
X = \frac{1}{d} \quad \text{for} \quad \text{if} \quad \text
$$

K ロ ▶ K 個 ▶ K 로 ▶ K 로 ▶ - 로 - K 9 Q @ July 17, 2024 10 / 22

Relationship between MGF and probability distribution: MGF uniquely defnes the distribution of a random variable.

Example:

• X ∼ Bernoulli(p)

$$
p)
$$

$$
M_X(t) = \mathbb{E}(e^{tX}) = e^0 \cdot (1 - p) + e^t \cdot p = pe^t + \underline{1 - p}.
$$

• Conversely, if we know that

$$
M_Y(t) = \frac{1}{3}e^t + \frac{2}{3},
$$

it shows $Y \sim$ Bernoulli $(p = \frac{1}{3})$.

$$
p=\frac{1}{3}.
$$

$$
d_{\text{inc}} \text{ f.e. } \text{uniqueness } \text{ properly of } \text{MGP.}
$$

K ロ ▶ K 個 ▶ K 로 ▶ K 로 ▶ 『로 『 YO Q @ July 17, 2024 10 / 22

Intuition: To get the distribution of a transformed random variable, it suffices to find its MGF first. $\hat{\mathcal{A}}$ = $E e^{atx} \cdot e^{tb} = e^{tb} E e^{(ct)x}$ fices to find
 $E \xrightarrow{e^{(c+f)x}}$

= $M_x (a f)$ **E-OI-Vall
ition:** To g
 1GF first.
Denotion:
 $\frac{Y = aX + B}{X_1, \dots, X_n}$

Properties:

- $Y = aX + b$, $M_Y(t) = \mathbb{E}(e^{t(aX+b)}) = e^{tb}M_X(at)$.
- X_1, \dots, X_n independent, $Y = \sum_{i=1}^n X_i$, then $M_Y(t) = \prod_{i=1}^n M_{X_i}(t)$.

$$
AX + B, W_Y(t) = \mathbb{E}(e^{tX + t}) = e^{-t}W_X(at).
$$

\n
$$
\therefore X_n \text{ independent, } Y = \sum_{i=1}^n X_i, \text{ then } M_Y(t) = \prod_{i=1}^n M_{X_i}(t).
$$

\n
$$
M_Y(t) = \mathbb{E} \quad e^{tY} = \mathbb{E} \quad \text{exp} \left(\frac{t}{t} \sum_{i=1}^n X_i \right)
$$

\n
$$
= \mathbb{E} \quad \frac{1}{t} \quad \text{exp}(tX_t) = \mathbb{E} \quad \text{exp} \left(\frac{t}{t} \sum_{i=1}^n X_i \right)
$$

\n
$$
= \mathbb{E} \quad \frac{1}{t} \quad \text{exp}(tX_t) = \mathbb{E} \quad \text{exp} \left(\frac{t}{t} \sum_{i=1}^n X_i \right)
$$

Intuition: To get the distribution of a transformed random variable, it suffices to find its MGF frst.

Properties:

- $Y = aX + b$, $M_Y(t) = \mathbb{E}(e^{t(aX+b)}) = e^{tb}M_X(at)$.
- X_1, \dots, X_n independent, $Y = \sum_{i=1}^n X_i$, then $M_Y(t) = \prod_{i=1}^n M_{X_i}(t)$.

Remark:

MGF is a useful tool to fnd the distribution of some transformed random variables, especially when

- *•* The original random variable follows some special distribution, so that we already know / can compute the MGF.
- The transformation on the original variables is linear, say $\sum_i a_i X_i$.

Example: Gamma distribution

$$
X \sim \Gamma(\alpha, \beta),
$$

$$
f(x; \alpha, \beta) = \frac{x^{\alpha - 1} e^{-\beta x} \beta^{\alpha}}{\Gamma(\alpha)} \quad \text{for } x > 0 \quad \alpha, \beta > 0.
$$

Compute the MGF of $X \sim \Gamma(\alpha, \beta)$ (details omitted),

$$
M_X(t) = \left(1 - \frac{t}{\beta}\right)^{-\alpha} \text{ for } t < \beta, \text{ does not exist for } t \geq \beta.
$$

K ロ ▶ K 個 ▶ K 로 ▶ K 로 ▶ 『로 『 YO Q @ July 17, 2024 12 / 22

Example: Gamma distribution

Observation:

The two parameters α , β play different roles in variable transformation.

• Summation:

If $X_i \sim \Gamma(\alpha_i, \beta)$, and X_i 's are independent, then $T = \sum_i X_i \sim \Gamma(\sum_i \alpha_i, \beta)$. If $X_i \sim Exp(\lambda)$ (this is equivalently $\Gamma((\alpha_i = 1, \beta = \lambda))$ distribution), and X_i 's are independent, then $T = \sum_i X_i \sim \Gamma(n, \lambda)$.

• Scaling:

If
$$
X \sim \Gamma(\alpha, \beta)
$$
, then $Y = cX \sim \Gamma(\alpha, \frac{\beta}{c})$.

can show all of these through MGF

 $Iff \times_{\tilde{c}} \sim \Gamma(\tilde{d} \tilde{c}_i \tilde{c}_j)$, $\chi_{\tilde{c}}^{\text{1}} s$ are indepert, $r \times_{\tilde{c}} \sim \lceil \lceil \lfloor \det(\beta) \rfloor \rceil, \quad \forall \tilde{c} \rceil$ s on $r \equiv \lceil \lfloor - \frac{1}{\sqrt{\beta}} \rceil$ $M_{X_c} (f) = (1 - \frac{f}{\beta})^{-\alpha_c}$
for $Y = \sum_{i=1}^{\infty} X_c$ $\begin{matrix} \mathcal{S}^{\circ} & \mathcal{S}^{\circ} & \mathcal{S}^{\circ} \end{matrix}$ $M_{7}(f) = \frac{1}{\sqrt{2}} M_{86}(f)$ $\alpha_{\dot{c}}$ $=$ (a) $\left(1-\frac{1}{6}\right)$ = $(1-\frac{1}{\sqrt{3}})^{-\alpha_c}$ B_7 the uniqueness property of MGF,
 \sim \sim $\sqrt{2}d_{v_1}B$

Example: χ^2 distribution

χ^2 distribution

If $X \sim \mathcal{N}(0, 1)$, then X^2 follows a $\chi^2(1)$ distribution.

Find the distribution of $\chi^2(1)$ distribution

• From PDF: (Module 4, Problem 2) For X with density function $f_X(x)$, the density function of $Y = X^2$ is

$$
f_Y(y)=\frac{1}{2\sqrt{y}}(f_X(-\sqrt{y})+f_X(\sqrt{y})), \quad y\geq 0,
$$

this gives

$$
f_Y(y) = \frac{1}{\sqrt{2\pi}} y^{-\frac{1}{2}} \exp(-\frac{y}{2}).
$$

July 17, 2024 14 / 22

 QQQ

 $\left\{ \bigoplus_k k \bigoplus_k k \bigoplus_k k \right\}$

Find the distribution of $\chi^2(1)$ distribution (continued)

Using the distribution of
$$
\chi^2(1)
$$
 distribution (continued)

\n• From MGF:

\n
$$
\frac{\chi}{\chi} \frac{\chi}{\chi} \frac{\chi \sqrt{U(0,1)}}{\sqrt{2\pi}} = \int_{-\infty}^{\infty} \exp(tx^2) \frac{1}{\sqrt{2\pi}} \exp(-\frac{x^2}{2}) \, dx
$$

\n
$$
= \int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{x^2}{2(1-2t)^{-1}}\right) \, dx
$$

\n
$$
= (1-2t)^{-\frac{1}{2}} \int_{-\infty}^{\infty} \mathcal{N}(0, (1-2t)^{-1}) \, dx, \quad t < \frac{1}{2}
$$

\n⇒
$$
\frac{\chi(1-2t)^{-\frac{1}{2}}}{\chi^2} \frac{\chi}{\chi} \frac{1}{\chi} \frac{1}{\chi} \frac{1}{\chi}
$$

\nBy observation, $\chi^2(1) = \Gamma(\frac{1}{2}, \frac{1}{2})$.

\nQ/NLO

\

K ロ ▶ K 個 ▶ K 글 ▶ K 글 ▶ │ 글 │ ◆) Q ⊙ July 17, 2024 15 / 22

Generalize to the $\chi^2(d)$ **distribution**

$\chi^2(d)$ distribution If X_i , $i = 1, \dots, d$ are i.i.d $\mathcal{N}(0, 1)$ random variables, then $\sum_{i=1}^{d} X_i^2 \sim \chi^2(d)$. By properties of MGF, $\chi^2(d) = \Gamma(\frac{d}{2}, \frac{1}{2})$, and this gives the PDF of $\chi^2(d)$ distribution

$$
\frac{x^{\frac{d}{2}-1}e^{-\frac{x}{2}}}{2^{\frac{d}{2}}\Gamma(\frac{d}{2})}
$$
 for $x > 0$.

K ロ ▶ K 個 ▶ K 글 ▶ K 글 ▶ │ 글 │ ◆) Q (º July 17, 2024 16 / 22

From expectation to conditional expectation:

How will the expectation change after conditioning on some information?

イロン イ部ン イヨン イヨン 一番 299 July 17, 2024 17 / 22

From expectation to conditional expectation:

How will the expectation change after conditioning on some information?

Conditional expectation

If X and Y are both discrete random vectors, then for function $g(\cdot)$,

• Discrete:

$$
\mathbb{E}(g(X) | Y = y) = \sum_{x} g(x) p_{X|Y=y}(x) = \sum_{x} g(x) \frac{P(X=x, Y=y)}{P(Y=y)}
$$

• Continuous:

$$
\mathbb{E}(g(X) | Y = y) = \int_{-\infty}^{\infty} g(x) f_{X|Y}(x|y) \mathrm{d}x = \frac{1}{f_Y(y)} \int_{-\infty}^{\infty} g(x) f_{X,Y}(x,y) \mathrm{d}x.
$$

Properties:

• If X and Y are independent, then

• If X is a function of Y, denote $X = g(Y)$, then

Sketch of proof:

then
\n
$$
\mathbb{E}(X | Y = y) = \mathbb{E}(X).
$$
\n
$$
e X = g(Y), \text{ then}
$$
\n
$$
\mathbb{E}(X | Y = y) = g(y).
$$
\n
$$
\mathbb{E}\left(\begin{array}{c} g(Y) \mid \text{7.3} \\ 0 \end{array}\right)
$$
\n
$$
\mathbb{E}\left(\begin{array}{c} g(Y) \mid \text{7.3} \\ 0 \end{array}\right)
$$
\n
$$
\mathbb{E}\left(\begin{array}{c} g(X) \mid \text{7.3} \\ \text{C.4} \end{array}\right)
$$

$$
\overbrace{\text{ORON}^{\text{UNIVERSITY OF}}}
$$

$$
du = f_{c}
$$
\n
$$
\int_{x}^{\infty} \int_{x}^{x} f(x, y) dx = \int_{x}^{x} f(x) dx
$$
\n
$$
f_{x} = \int_{x}^{x} f(x) dx
$$

4 0 8 \rightarrow 4 \equiv \rightarrow 298 July 17, 2024 18 / 22

Remark:

By changing the value of $Y = y$, $\mathbb{E}(X | Y = y)$ also changes, and $\mathbb{E}(X | Y)$ is a random variable (the randomness comes from Y). $\mathbb{E}(X | Y)$ is a random By ch
variab **nditional expectation**
Remark:
By changing the value of $Y = y$, $\mathbb{E}(X | y)$
variable (the randomness comes from Y

Remark:

By changing the value of $Y = y$, $\mathbb{E}(X | Y = y)$ also changes, and $\mathbb{E}(X | Y)$ is a random variable (the randomness comes from Y).

Total expectation and conditional expectation

Law of total expectation

 $\mathbb{E}(\mathbb{E}(X | Y)) = \mathbb{E}(X)$

Proof: (discrete case) July 17, 2024 19 / 22 LHS = al expectation

ing the value of $Y = y$, $\mathbb{E}(X | Y = y)$ also changes, and $\mathbb{E}(X | Y)$ is a random

the randomness comes from Y).

bectation and conditional expectation
 $\mathbb{E}(\mathbb{E}(X | Y)) = \mathbb{E}(X)$

discrete case
 $\mathbb{E} \$ $\tau = \sum_{\gamma \in \mathcal{X}} \sum_{\gamma} \chi \varphi(\chi_{z} \chi_{\gamma} \chi_{z} \chi_{\gamma}) = \sum_{\gamma} \chi \sum_{\gamma} \varphi(\chi_{z} \chi_{\gamma})$ $x = x, y = 2$
 $y = 2$
 , T2E) A ⁼ (P(X= $\boxed{\mathbf{P}(\mathbf{X}^2 \mathbf{X})}$

Total variance and conditional variance

Conditional variance

$$
Var(Y | X) = \mathbb{E}(Y^2 | X) - (\mathbb{E}(Y | X))^2.
$$

イロト イ部 トイヨ トイヨト 画 298 July 17, 2024 20 / 22

Total variance and conditional variance

Conditional variance

$$
Var(Y | X) = \mathbb{E}(Y^2 | X) - (\mathbb{E}(Y | X))^2.
$$

Law of total variance $Var(Y) = \mathbb{E}[Var(Y | X)] + Var(\mathbb{E}[Y | X]).$ **Remark:** γ - $(\mathbb{E}(Y | X))^2$.
 $\left(\frac{1}{2} + \text{Var}(\mathbb{E}[Y | X]).\right)$ \setminus is random writ. ^X

Problem Set

Problem 1: Prove that $\mathbb{E}(XY) = \mathbb{E}(X)\mathbb{E}(Y)$ when X and Y are independent. (Hint: simply consider the continuous case, use the independent property of the joint pdf)

Problem 2: For $X \sim Uniform(a, b)$, compute $\mathbb{E}(X)$ and $\text{Var}(X)$.

Problem 3: Determine the MGF of $X \sim \mathcal{N}(\mu, \sigma^2)$. (Hint: Start by considering the MGF of Z ∼ *N* (0*,* 1), and then use the transformation $X = \mu + \sigma Z$

Problem Set

Problem 4: The citizens of Remuera withdraw money from a cash machine according to $X = 50, 100, 200$ with probability 0.3, 0.5, 0.2, respectively. The number of customers per day has the distribution $N \sim Poisson(\lambda = 10)$. Let $T_N = X_1 + X_2 + \cdots + X_N$ be the total amount of money withdrawn in a day, where each X_i has the probability above, and X_i 's are independent of each other and of N.

- Find $E(T_N)$,
- Find $Var(T_N)$.

