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Recap

Learnt in last module:

® Moments

> Expectation, Raw moments, central moments
> Moment-generating functions

® Change-of-variables using MGF
> Gamma distribution
> Chi square distribution

e Conditional expectation

> Law of total expectation
> Law of total variance
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Outline

e Covariance
> Covariance as an inner product
> Correlation
> Cauchy-Schwarz inequality
> Uncorrelatedness and Independence

e Concentration

> Markov's inequality
> Chebyshev's inequality
> Chernoff bounds
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Covariance

Recall the property of expectation:

E(X+Y) =E(X) +E(Y).
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Covariance

Recall the property of expectation:
E(X+Y) =E(X) +E(Y).
What about the variance?

Var(X+ Y) = E(X+ Y — E(X) — E(Y))?

= E(X — E(X))* + E(Y — E(Y))? + 2E((X — E(X))(Y — E(Y)))

= Var(X) + Var(Y) + 2 E((X — E(X))(Y - E(Y)))
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Covariance

Intuition:
A measure of how much X, Y change together.
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Covariance

Intuition:
A measure of how much X, Y change together.

Covariance

For two jointly distributed real-valued random variables X, Y with finite second
moments, the covariance is defined as

Cov(X, Y) = E((X - E(X))(Y - E(Y))).

Simplification:

Col(X, Y) = E(XY) — E(X)E(Y).
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Covariance

Properties:
e Cov(X, X) = Var(X) > 0;
® Cov(X,a) =0, ais a constant;
® Cov(X,Y) = CouY, X);
e Cov(X+a, Y+ b)=Cov(X,Y);
e Cov(aX,bY) = abCov(X,Y).

?3_' UNIVERSITY OF
& TORONTO

July 19, 2024

6/1



Covariance

Properties:
e Cov(X, X) = Var(X) > 0;
® Cov(X,a) =0, ais a constant;
® Cov(X,Y) = CouY, X);
e Cov(X+a, Y+ b)=Cov(X,Y);
e Cov(aX,bY) = abCov(X,Y).

Corollary about variance:

Var(aX + b) = a*Var(X).
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Covariance

Relate covariance to inner product:

Inner product (not rigorous)

Inner product is a operator from a vector space V to a field F (use R here as an
example): < -+ >: V' x V — R that satisfies:

® Symmetry: < x,y >=<y,x >;
® |inearity in the first argument: < ax+ by, z>=a< x,z> +b < y,z>;

® Positive-definiteness: < x,x>>0, and < x,x>=0& x=0
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Covariance

Relate covariance to inner product:

Inner product (not rigorous)

Inner product is a operator from a vector space V to a field F (use R here as an
example): < -+ >: V' x V — R that satisfies:

® Symmetry: < x,y >=<y,x >;
® |inearity in the first argument: < ax+ by, z>=a< x,z> +b < y,z>;

® Positive-definiteness: < x,x>>0, and < x,x>=0& x=0

Remark:

Covariance defines an inner product over the quotient vector space obtained by taking
the subspace of random variables with finite second moment and identifying any two
that differ by a constant.
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Covariance

Properties inherited from the inner product space

Recall in Euclidean vector space:
o <xy>=xy=>" xyi
® (x| = /<X, x>;

* <xy>=|[xl2-[lyll2cos(6).

Respectively:
e < X, Y>= Cov(X,Y),

* |IX| = v/ Var(X);
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Covariance

A substitute for cos(6):

Correlation

For two jointly distributed real-valued random variables X, Y with finite second
moments, the correlation is defined as

Cov(X Y)
v/ Var(X) - Var(Y)

Corr(X,Y) = pxy =
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Covariance

A substitute for cos(6):

Correlation

For two jointly distributed real-valued random variables X, Y with finite second
moments, the correlation is defined as

Cov(X Y)
v/ Var(X) - Var(Y)

Corr(X,Y) = pxy =

Uncorrelatedness:

X, Y uncorrelated < Corr(X,Y) =0.
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Covariance

Cauchy-Schwarz inequality

|Cov(X, Y)| </ Var(X)Var(Y).

Proof:
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Covariance

Uncorrelatedness and Independence:

Observe the relationship:

Corr(X,Y)=0 <& Cov(X.Y)=0 < E(XY)=E(XE(X)
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Covariance

Uncorrelatedness and Independence:

Observe the relationship:
Corr(X,Y)=0 <& Cov(X.Y)=0 < E(XY)=E(XE(X)
Conclusions:

® |ndependence = Uncorrelatedness

® Uncorrelatedness == Independence

Remark:
Independence is a very strong assumption/property on the distribution.
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Covariance

Special case: multivariate normal

Multivariate normal

A k-dimensional random vector X = (X1, X, - - ,Xk)T follows a multivariate normal
distribution X ~ N (p, X), if

exp (—i(x — p)TEZ(x —
(X1, ..y Xk) = p( 2( (;3)[(’2&( IL)),

where u = E[X] = (E[X1], E[X2],...,E[Xi]) ", and [E];; = Z;; = Cov(X;, X)).

Observation:
The distribution is decided by the covariance structure.
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Covariance

k

Xi,i=1,---kindependent < fx(x1,...,xk) = H fx.(xi)

Example:

e Corr(X,Y)=0
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Covariance

k

Xi,i=1,---kindependent < fx(x1,...,xk) = H fx.(xi)

Example:

e Corr(X,Y)=0.7
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Covariance
k
Xi,i=1,---kindependent < fx(x1,...,xk) = H fx.(xi)
i=1
SY=ke COV(X,',)(j) = O,f#j.

Example:

e Corr(X,Y)=-0.7
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Concentration
Measures of a distribution:
o E(X¥), E(X), Var(X);

® Cov(X,Y) and Corr(X,Y).
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Concentration
Measures of a distribution:
o E(XK), E(X), Var(X);
® Cov(X,Y) and Corr(X,Y).

Tail probability: P(|X| > t)

S
=

-3 =2 0 2 3
X

Figure: Probability density function of A(0, 1)
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Concentration

Concentration inequalities:

® Markov inequality
® Chebyshev inequality
® Chernoff bounds
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Concentration

Concentration inequalities:
® Markov inequality
® Chebyshev inequality
® Chernoff bounds

Markov inequality

Let X be a random variable that is non-negative (almost surely). Then, for every
constant a > 0,
E(X)

a

P(X>a) <

Proof:
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Concentration

Markov inequality (continued)

Let X be a random variable, then for every constant a > 0,

MMZ@SMTX

A more general conclusion:

Markov inequality (continued)

Let X be a random variable, if ®(x) is monotonically increasing on [0, o), then for
every constant a > 0,

E(®(1X]))

P(IX] > 2) = B(O(1X)) 2 ®(a) < =g
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Concentration

Chebyshev inequality

Let X be a random variable with finite expectation E(X) and variance Var(X), then for

every constant a > 0,
V.
P(X—E(X)| > a) < 2%,
a

or equivalently,

P(X~E(X)| > ay/VarlX)) < .

Example:
Take a =2, 1
P(|X — E(X)| > 24/ Var(X)) < e
& TORONTO
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Concentration

Chernoff bound (general)
Let X be a random variable, then for t > 0,

IA
=
N
i

P(X > a) = P(e"X > &)

= et,a 9
and x
E|e"
P(X > a) < inf [ ]
>0 et
Remark:
This is especially useful when considering X = >""_; X; with X;'s independent,
E [IT;e]
> < i — —t-a [ t~X,} .
P(X>a) < gg e gge HE e
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Problem Set

Problem 1: Let
2 0<y<x<l1

0 otherwise

fx.v(x,y) = {

compute Cov(X,Y).
Problem 2: For X ~ N(0,1), compute the Chernoff bound.
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