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Recap

Learnt in last module:

® Moments

> Expectation, Raw moments, central moments
> Moment-generating functions

® Change-of-variables using MGF
> Gamma distribution
> Chi square distribution

e Conditional expectation

> Law of total expectation
> Law of total variance
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Outline

e Covariance
> Covariance as an inner product
> Correlation
> Cauchy-Schwarz inequality
> Uncorrelatedness and Independence

e Concentration

> Markov's inequality
> Chebyshev's inequality
> Chernoff bounds
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Covariance

Recall the property of expectation:

E(X+Y) =E(X) +E(Y).
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Covariance

Recall the property of expectation:

E(X+Y) = E(X) + E(Y).
What about the variance?
Var( X+ Y) = E(X+ Y — E(X) — E(Y))?
= E(X—E(X))* + E(Y — E(Y))* + 2E((X — E(X))(Y
= Var(X) + Var(Y) + RE((X — E(X))(Y — E(Y)))
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Covariance

Intuition:
A measure of how much X, Y change together.
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Covariance

Intuition:
A measure of how much X, Y change together.

Covariance

For two jointly distributed real-valued random variables X, Y with finite second
moments, the covariance is defined as Eytcoso

Cor(X, V) = E(X—E(X))(Y-E(V))). B <7

Simplification:

COV(X, Y) = E(XY) _ E(X)]E(Y)
(o (1) E(0et¥) (t-e0)) 2 B ((x1- (YT
. B - (BX) - (#1) — CBx) (BY) « (EX). (E7)

— )X «EET)
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Covariance

Properties:

&

Cov(X, X) = Var(X) > 0;

-G¥). (c-E
Cov(X,a) =0, aisa constant; —7 (v (ve): B CCX @) (i,_(f/*))
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Covariance

Properties:

o Cov(X, X) = Var(X) > 0;

X,a) =0, ais a constant;
X, Y) = Co(Y, X);

X+ a, Y+ b) = Cov(X, Y);
aX, bY) = abCov(X,Y).

w e Cov

wi)e Covi

P

) o Cov

—~

) e Cov

—~

Corollary about variance:

Var(aX + b) = a*Var(X).
: ) )
e (6t) T GG, arth)S e, 02) =

<
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Covariance

Relate covariance to inner product:

Inner product (not rigorous)

Inner product is a operator from a vector space V to a field F (use R here as an
example): < -+ >: V' x V — R that satisfies:

® Symmetry: < x,y >=< y,x >;
® |inearity in the first argument: < ax+ by, z>=a< x,z> +b < y,z>;
® Positive-definiteness: < x,x>>0, and < x,x>=0&< x=0
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Covariance

Relate covariance to inner product:

Inner product (not rigorous)

Inner product is a operator from a vector space V to a field F (use R here as an
example): < -+ >: V' x V — R that satisfies:

® Symmetry: < x,y >=< y,x >;
® |inearity in the first argument: < ax+ by, z>=a< x,z> +b < y,z>;

® Positive-definiteness: < x,x>>0, and < x,x>=0&< x=0

Remark:

Covariance defines an inner product over the quotient vector space obtained by taking
the subspace of random variables with finite second moment and identifying any two
that differ by a constant.
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Covariance

Properties inherited from the inner product space

Recall in Euclidean vector space:
o <xy>=xy=>" xyi
® (x| = /<X, x>;

* <xy>=|[xl2-[lyll2cos(6).

Respectively:
e < X, Y>= Cov(X,Y),

* |IX| = v/ Var(X);
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Covariance

A substitute for cos(6):

Correlation

For two jointly distributed real-valued random variables X, Y with finite second
moments, the correlation is defined as

Cov(X Y)
v/ Var(X) - Var(Y)

Corr(X,Y) = pxy =
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Covariance

A substitute for cos(6):

Correlation

For two jointly distributed real-valued random variables X, Y with finite second
moments, the correlation is defined as

Cov(X Y)
v/ Var(X) - Var(Y)

Corr(X,Y) = pxy =

Uncorrelatedness:

X, Y uncorrelated < Corr(X,Y) =0.
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Covariance

Cauchy-Schwarz inequality

|Cov(X, V)| < /Var(X)Var(Y).

Proof: [_V-/'t— *’ £ ¥= Q ; \;(,l£~{: ?‘
0 ¢ ﬁ(fﬁ?)l? EY 2t e (%7t € BT
- ~ ’\w/—’__/—\f
tee ibuc.d-vc‘]"‘c ot t

g“u (3 t‘uVJvUP' Lu'uj Fer ey € GP/
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Covariance

Uncorrelatedness and Independence:

Observe the relationship:
I
Corr(X,Y)=0 < Cov(X,Y)=0 < E(XY)=E(XEX)
A —m——— —
’fél") htpp-uq)

o X o Y
Gre tk:ﬂ‘-{%f
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Covariance

Uncorrelatedness and Independence:

Observe the relationship:
Corr(X,Y)=0 <& Cov(X.Y)=0 < E(XY)=E(XE(X)
Conclusions:

® |ndependence = Uncorrelatedness

® Uncorrelatedness == Independence

Remark:
Independence is a very strong assumption/property on the distribution.
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Covariance

Special case: multivariate normal

Multivariate normal

A k-dimensional random vector X = (X1, X, - - ,Xk)T follows a multivariate normal
distribution X ~ N (p, X), if

exp (—L(x — pw)TEZ1(x —
(X1, .., Xk) = p( 2( (;L;)klzz|( ”))7

where p :W], L EX])T, and [Z];; = Zij = Cov(X;, X;).
MA-2s~ [/1_&/}‘0\/ 06-X

Observation:
The distribution is decided by the covariance structure. 5~ . & ()(*/L}'U(“M)T

Z co vantece Vma{w‘){ ; P}’D
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Covariance

J

k
Xi,i=1,---kindependent < fx(x1,...,xk) = H fx.(xi)
i=1

olrogens]
S X =% Cov(X;, X)) =0,i#].

Example:

e Corr(X,Y)=0
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Covariance

k

Xi,i=1,---kindependent < fx(x1,...,xk) = H fx.(xi)

Example:

e Corr(X,Y)=0.7
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Covariance
k
Xi,i=1,---kindependent < fx(x1,...,xk) = H fx.(xi)
i=1
SY=ke COV(X,',)(j) = O,f#j.

Example:

e Corr(X,Y)=-0.7
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Concentration
Measures of a distribution:
o E(X¥), E(X), Var(X);

® Cov(X,Y) and Corr(X,Y).
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Concentration
Measures of a distribution:
o E(XK), E(X), Var(X);
® Cov(X,Y) and Corr(X,Y).

Tail probability: P(|X| > t)

S
=

-3 =2 0 2 3
X

Figure: Probability density function of N(0, 1)
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Concentration

Concentration inequalities:

® Markov inequality
® Chebyshev inequality
® Chernoff bounds
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Concentration

Concentration inequalities:
® Markov inequality
® Chebyshev inequality
® Chernoff bounds

Markov inequality

Let X be a random variable that is non-negative (almost surely). Then, for every
constant a > 0,

Proof: W‘L ey - Leh C‘FUM/‘CD% 0+ E € PVJ_D“%-‘((’\ . ¢-e .

N2, fe, B X ZET
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Concentration

Markov inequality (continued)

Let X be a random variable, then for every constant a > 0,

E(1X))

P(1X] > a) <

A more general conclusion:

Markov inequality (continued)

Let X be a random variable, if ®(x) is monotonically increasing on [0, o), then for
/\/'\—/_\NM"\WM\—_
every constant a > 0, by Mor bov

E(®(1X]))
P(|1X] > a)@P@(!X!) > ¢(a))éw-
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Concentration g Rk £ (x)= ~x*

Chebyshev inequality

Let X be a random variable with finite expectation E(X) and variance Var(X), then for

every constant a > 0,
V.
P(X—E(X)| > a) < 2%,
a

or equivalently,

P(X~E(X)| > ay/VarX)) < .

Example:
Take a =2, 1
P(|X — E(X)| > 24/ Var(X)) < e
& TORONTO
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Concentration

Chernoff bound (general)
Let X be a random variable, then for t ﬁ 0, by Hovkev:
A
tX < At E [¢%]
P(X> a)e)P(e"" > e ")@ :

eta

E [et'X]

> a) < .

{d-) ftnem of PHS chae.

Remark:
This is especially useful when considering X = >""_; X; with X;'s independent,
W
E . et-X,‘
P(X> a) < inf M = inf e_t'aHIE [et'x'} .
>0 eta £>0 ;
B versiry or - a !
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Problem Set

Problem 1: Let
2 0<y<x<l1

0 otherwise

fx.v(x,y) = {

compute Cov(X,Y).
Problem 2: For X ~ N(0,1), compute the Chernoff bound.
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