

Statistical Sciences

DoSS Summer Bootcamp Probability Module 6

Ichiro Hashimoto

University of Toronto

July 19, 2024

Recap

Learnt in last module:

- Moments
 - ▶ Expectation, Raw moments, central moments
 - Moment-generating functions
- Change-of-variables using MGF
 - ▶ Gamma distribution
 - ▷ Chi square distribution
- Conditional expectation

 - Law of total expectation

Outline

Covariance

- ▶ Correlation
- ▶ Uncorrelatedness and Independence

Concentration

- ▶ Markov's inequality
- ▷ Chebyshev's inequality
- ▷ Chernoff bounds

Recall the property of expectation:

$$\mathbb{E}(X+Y)=\mathbb{E}(X)+\mathbb{E}(Y).$$

Recall the property of expectation:

$$\mathbb{E}(X+Y)=\mathbb{E}(X)+\mathbb{E}(Y).$$

What about the variance?

$$Var(X + Y) = \mathbb{E}(X + Y - \mathbb{E}(X) - \mathbb{E}(Y))^{2}$$

$$= \mathbb{E}(X - \mathbb{E}(X))^{2} + \mathbb{E}(Y - \mathbb{E}(Y))^{2} + 2\mathbb{E}((X - \mathbb{E}(X))(Y - \mathbb{E}(Y)))$$

$$= Var(X) + Var(Y) + 2\mathbb{E}((X - \mathbb{E}(X))(Y - \mathbb{E}(Y)))$$

Intuition:

A measure of how much X, Y change together.

Intuition:

A measure of how much X, Y change together.

Covariance

For two jointly distributed real-valued random variables X, Y with finite second moments, the covariance is defined as

$$Cov(X, Y) = \mathbb{E}((X - \mathbb{E}(X))(Y - \mathbb{E}(Y))).$$

Simplification:

$$Cov(X, Y) = \mathbb{E}(XY) - \mathbb{E}(X)\mathbb{E}(Y).$$

$$(ov(Y)Y)^{2} = ((x \cdot Ex)(Y - EX) \cdot (x - EX)Y - (EX)Y - (EX)$$

E72<00

Properties:

- $Cov(X,X) = Var(X) \ge 0$;
- Cov(X, a) = 0, a is a constant; $\rightarrow C_v(Y, a) = \mathbb{F}\left((X \mathbb{F}Y), (Q \mathbb{F}A)\right)$
- Cov(X, Y) = Cov(Y, X);
- $Cov(X + a, Y + b) = Cov(X, Y); \rightarrow Cov(Y + a, Y + b)$
- Cov(aX, bY) = abCov(X, Y).

Properties:

- $Cov(X,X) = Var(X) \geq 0$;
- Cov(X, a) = 0, a is a constant;
- (iii) Cov(X, Y) = Cov(Y, X);
- (v) Cov(X + a, Y + b) = Cov(X, Y);
- (\vee) Cov(aX, bY) = abCov(X, Y).

Corollary about variance:

$$Var(aX+b) = a^{2}Var(X).$$

$$Vcr(a+b) = (or(a+b), a+b) =$$

Relate covariance to inner product:

Inner product (not rigorous)

Inner product is a operator from a vector space V to a field F (use \mathbb{R} here as an example): $\langle \cdot, \cdot \rangle \colon V \times V \to \mathbb{R}$ that satisfies:

- Symmetry: < x, y > = < y, x >;
- Linearity in the first argument: $\langle ax + by, z \rangle = a \langle x, z \rangle + b \langle y, z \rangle$;
- Positive-definiteness: $\langle x, x \rangle \geq 0$, and $\langle x, x \rangle = 0 \Leftrightarrow x = 0$

$$V = L^2$$
 space: a space of square-integrable $V.V.$'s $[\pm \chi^2 < \infty]$

Relate covariance to inner product:

Inner product (not rigorous)

Inner product is a operator from a vector space V to a field F (use \mathbb{R} here as an example): $\langle \cdot, \cdot \rangle \colon V \times V \to \mathbb{R}$ that satisfies:

- Symmetry: < x, y > = < y, x >;
- Linearity in the first argument: $\langle ax + by, z \rangle = a \langle x, z \rangle + b \langle y, z \rangle$;
- Positive-definiteness: $\langle x, x \rangle \geq 0$, and $\langle x, x \rangle = 0 \Leftrightarrow x = 0$

Remark:

Covariance defines an inner product over the quotient vector space obtained by taking the subspace of random variables with finite second moment and identifying any two that differ by a constant.

Properties inherited from the inner product space

Recall in Euclidean vector space:

- $\langle x, y \rangle = x^{\top} y = \sum_{i=1}^{n} x_i y_i;$
- $||x||_2 = \sqrt{\langle x, x \rangle};$
- $\langle x, y \rangle = ||x||_2 \cdot ||y||_2 \cos(\theta)$.

Respectively:

- \bullet < X, Y>= Cov(X, Y);
- $||X|| = \sqrt{Var(X)};$

A substitute for $cos(\theta)$:

Correlation

For two jointly distributed real-valued random variables X, Y with finite second moments, the correlation is defined as

$$Corr(X, Y) = \rho_{XY} = \frac{Cov(X, Y)}{\sqrt{Var(X) \cdot Var(Y)}}.$$

A substitute for $cos(\theta)$:

Correlation

For two jointly distributed real-valued random variables X, Y with finite second moments, the correlation is defined as

$$Corr(X, Y) = \rho_{XY} = \frac{Cov(X, Y)}{\sqrt{Var(X) \cdot Var(Y)}}.$$

Uncorrelatedness:

$$X, Y \text{ uncorrelated} \Leftrightarrow Corr(X, Y) = 0.$$

Cauchy-Schwarz inequality

$$|Cov(X, Y)| \leq \sqrt{Var(X)Var(Y)}.$$

Proof: Let
$$X - \mathbb{E} X = \widehat{X}$$
, $Y - \mathbb{E} Y = \widehat{Y}$.

$$0 \leq \mathbb{E} (\widehat{X} + \widehat{Y})^2 = \widehat{E} \widehat{X}^2 + 2 + \widehat{E} (\widehat{X} \cdot \widehat{Y}) + \widehat{U}^2 = \widehat{Y}^2$$

Evadorities with the start of the

Uncorrelatedness and Independence:

Observe the relationship:

$$Corr(X, Y) = 0 \Leftrightarrow Cov(X, Y) = 0 \Leftrightarrow \mathbb{E}(XY) = \mathbb{E}(X)\mathbb{E}(X)$$

when X and Y
 $Q_{Y} = Q_{Y} = Q_{Y} = Q_{Y}$

Uncorrelatedness and Independence:

Observe the relationship:

$$Corr(X, Y) = 0 \Leftrightarrow Cov(X, Y) = 0 \Leftrightarrow \mathbb{E}(XY) = \mathbb{E}(X)\mathbb{E}(X)$$

Conclusions:

- Independence ⇒ Uncorrelatedness

Remark:

Independence is a very strong assumption/property on the distribution.

Special case: multivariate normal

Multivariate normal

A k-dimensional random vector $\mathbf{X} = (X_1, X_2, \cdots, X_k)^{\top}$ follows a multivariate normal distribution $\mathbf{X} \sim \mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$, if

$$f_{\mathbf{X}}(x_1,\ldots,x_k) = \frac{\exp\left(-\frac{1}{2}(\mathbf{x}-\boldsymbol{\mu})^{\mathrm{T}}\boldsymbol{\Sigma}^{-1}(\mathbf{x}-\boldsymbol{\mu})\right)}{\sqrt{(2\pi)^k|\boldsymbol{\Sigma}|}},$$

where
$$\underline{\mu} = \mathbb{E}[\mathbf{X}] = (\mathbb{E}[X_1], \mathbb{E}[X_2], \dots, \mathbb{E}[X_k])^{\top}$$
, and $[\mathbf{\Sigma}]_{i,j} = \Sigma_{i,j} = Cov(X_i, X_j)$.

Observation:

The distribution is decided by the covariance structure. $\sum E(x-n) \cdot (x-n)^T$

Sin
$$Z$$
 is PSD, a particular symmetric,

The general matrix V and disgonal $\Delta = \begin{pmatrix} \lambda_1^2 & 0 \\ 0 & \lambda_d^2 \end{pmatrix}$

($V^TV = VV^T = I$)

Sit:

 $I = V\Delta V^T \iff V^T = V^T = \Delta$.

Spectral decomposition

$$I^{-1} = V\Delta^{-1}V^{-1}V^{-1}$$

(X^-M) $I^{-1}(X^-M) = V^T(X^-M) = V^T(X^-M)$

$$= 2^{T} \Delta^{-1} 2 = \sum_{i=1}^{n} \lambda_{i}^{2} 2^{2}$$

$$= 3^{T} \Delta^{-1} 2 = \sum_{i=1}^{n} \lambda_{i}^{2} 2^{2}$$

$$= 3^{T} \Delta^{-1} 2 = \sum_{i=1}^{n} \lambda_{i}^{2} 2^{2}$$

$$f(x) = \prod_{i=1}^{m} \left(\frac{1}{12\pi \lambda_i} e^{ix} p \left(-\frac{2c^2}{2\lambda_0^2} \right) \right)$$

$$\rightarrow 2c \text{ are indepent.}$$

Clus

$$\underbrace{X_i, i = 1, \cdots k \text{ independent}}_{\text{k}} \Leftrightarrow f_{\mathbf{X}}(x_1, \dots, x_k) = \prod_{i=1}^{k} f_{X_i}(x_i)$$

$$\Leftrightarrow \mathbf{\Sigma} = \underbrace{\mathbf{X}}_{\text{k}} \Leftrightarrow Cov(X_i, X_j) = 0, i \neq j.$$

Example:

• Corr(X, Y) = 0

$$X_i, i = 1, \dots k$$
 independent $\Leftrightarrow f_{\mathbf{X}}(x_1, \dots, x_k) = \prod_{i=1}^{N} f_{X_i}(x_i)$
 $\Leftrightarrow \mathbf{\Sigma} = I_k \Leftrightarrow Cov(X_i, X_i) = 0, i \neq j.$

Example:

• Corr(X, Y) = 0.7

$$X_i, i = 1, \dots k$$
 independent $\Leftrightarrow f_{\mathbf{X}}(x_1, \dots, x_k) = \prod_{i=1}^m f_{X_i}(x_i)$
 $\Leftrightarrow \mathbf{\Sigma} = I_k \Leftrightarrow Cov(X_i, X_i) = 0, i \neq j.$

Example:

• Corr(X, Y) = -0.7

Measures of a distribution:

- $\mathbb{E}(X^k)$, $\mathbb{E}(X)$, Var(X);
- Cov(X, Y) and Corr(X, Y).

Measures of a distribution:

- $\mathbb{E}(X^k)$, $\mathbb{E}(X)$, Var(X);
- Cov(X, Y) and Corr(X, Y).

Tail probability: P(|X| > t)

Figure: Probability density function of $\mathcal{N}(0,1)$

Concentration inequalities:

- Markov inequality
- Chebyshev inequality
- Chernoff bounds

Concentration inequalities:

- Markov inequality
- Chebyshev inequality
- Chernoff bounds

Markov inequality

Let X be a random variable that is non-negative (almost surely). Then, for every constant a > 0.

$$\mathbb{P}(X \geq a) \leq \frac{\mathbb{E}(X)}{a}.$$

Proof:

We use menoforist of Expectation, i.e.

 $Y = \alpha 1 - (x = \alpha)$ $E = \alpha 1 - (x = \alpha)$ E =

Markov inequality (continued)

Let X be a random variable, then for every constant a > 0,

$$\mathbb{P}(|X| \geq a) \leq \frac{\mathbb{E}(|X|)}{a}.$$

A more general conclusion:

Markov inequality (continued)

Let X be a random variable, if $\Phi(x)$ is monotonically increasing on $[0,\infty)$, then for every constant a>0,

$$\mathbb{P}(|X| \geq a) = \mathbb{P}(\Phi(|X|) \geq \Phi(a)) \stackrel{\mathbb{E}(\Phi(|X|))}{\Phi(a)}.$$

Chebyshev inequality

Let X be a random variable with finite expectation $\mathbb{E}(X)$ and variance Var(X), then for every constant a > 0,

$$\mathbb{P}(|X - \mathbb{E}(X)| \ge a) \le \frac{Var(X)}{a^2},$$

or equivalently,

$$\mathbb{P}(|X - \mathbb{E}(X)| \ge a\sqrt{Var(X)}) \le \frac{1}{a^2}.$$

Example:

Take a=2,

$$\mathbb{P}(|X - \mathbb{E}(X)| \ge 2\sqrt{Var(X)}) \le \frac{1}{4}$$
.

Chernoff bound (general)

Let X be a random variable, then for $t \geq 0$,

riable, then for
$$t \geq 0$$
, by Morkov.
$$\mathbb{P}(X \geq a) \bigoplus \mathbb{P}(e^{t \cdot X} \geq e^{t \cdot a}) \bigotimes \frac{\mathbb{E}\left[e^{t \cdot X}\right]}{e^{t \cdot a}},$$

$$\left\{ \begin{array}{c} x \geq c \end{array} \right\} = \left\{ \begin{array}{c} \left\{ \cdot \times \right\} \\ \left\{ \cdot \times \right\} \end{array} \right\} = \left\{ \begin{array}{c} \left\{ \cdot \times \right\} \\ \left\{ \cdot \times \right\} \end{array} \right\} = \left\{ \begin{array}{c} \left\{ \cdot \times \right\} \\ \left\{ \cdot \times \right\} \end{array} \right\} = \left\{ \left\{ \cdot \times \right\} = \left\{ \left\{ \cdot \times \right\} \right\} = \left\{ \left\{ \cdot \times \right\} = \left\{ \left\{ \cdot \times \right\} \right\} = \left\{ \left\{ \cdot \times \right\} = \left\{ \left\{ \cdot \times \right\} \right\} = \left\{ \left\{ \cdot \times \right\} = \left\{ \left\{ \cdot \times \right\} \right\} = \left\{ \left\{ \cdot \times \right\} = \left\{ \left\{ \cdot \times \right\} \right\} = \left\{ \left\{ \cdot \times \right\} = \left\{ \left\{ \cdot \times \right\} \right\} = \left\{ \left\{ \cdot \times \right\} = \left\{ \left\{ \cdot \times \right\} \right\} = \left\{ \left\{ \left\{ \cdot \times \right\} \right\} = \left\{ \left\{ \cdot \times \right\} = \left\{ \left\{ \left\{ \cdot \times \right\} \right$$

tung ortinum of PHS above.

and

Remark:

This is especially useful when considering $X = \sum_{i=1}^{n} X_i$ with X_i 's independent,

$$\mathbb{P}(X \geq a) \leq \inf_{t \geq 0} \frac{\mathbb{E}\left[\prod_{i} e^{t \cdot X_{i}}\right]}{e^{t \cdot a}} = \inf_{t \geq 0} e^{-t \cdot a} \prod_{i} \mathbb{E}\left[e^{t \cdot X_{i}}\right].$$

In particular, if $X_i \stackrel{\text{sica}}{\approx} 2$. $P(XZC) \stackrel{\text{f}}{\approx} \inf \frac{(\mathbb{F}[e^{tZ}])^m}{e^{ta}}.$

e. 9.)
$$\chi_i$$
 $\stackrel{c.cd}{\sim}$ $\underset{t}{\operatorname{Burn}}(\frac{1}{2})$

$$\sharp \left(\underbrace{e^{t \cdot \chi_i}}_{2} \right)^2 = \underbrace{\frac{e^{t \cdot e^{t}}}_{2}}_{2} \underbrace{\left(\underbrace{e^{t \cdot e^{t}}}_{2} \right)^n}_{e^{t \cdot n}}$$
Thus $p\left(\underbrace{1}_{\alpha_i} \chi_{i^2} \chi_{i^2} \right) \leq \inf_{t > 0} \underbrace{\left(\underbrace{e^{t \cdot e^{t}}}_{2} \right)^n}_{e^{t \cdot n}}$

Problem Set

Problem 1: Let

$$f_{X,Y}(x,y) = \begin{cases} 2 & 0 \le y \le x \le 1 \\ 0 & \text{otherwise} \end{cases}$$

compute Cov(X, Y).

Problem 2: For $X \sim \mathcal{N}(0,1)$, compute the Chernoff bound.