

# Statistical Sciences

# DoSS Summer Bootcamp Probability Module 6

Ichiro Hashimoto

University of Toronto

July 19, 2024

# Recap

#### Learnt in last module:

- Moments
  - ▶ Expectation, Raw moments, central moments
  - Moment-generating functions
- Change-of-variables using MGF
  - ▶ Gamma distribution
  - ▷ Chi square distribution
- Conditional expectation

  - Law of total expectation



# **Outline**

#### Covariance

- ▶ Correlation
- ▶ Uncorrelatedness and Independence

#### Concentration

- ▶ Markov's inequality
- ▷ Chebyshev's inequality
- ▷ Chernoff bounds



# Recall the property of expectation:

$$\mathbb{E}(X+Y)=\mathbb{E}(X)+\mathbb{E}(Y).$$



#### Recall the property of expectation:

$$\mathbb{E}(X+Y)=\mathbb{E}(X)+\mathbb{E}(Y).$$

What about the variance?

$$Var(X + Y) = \mathbb{E}(X + Y - \mathbb{E}(X) - \mathbb{E}(Y))^{2}$$

$$= \mathbb{E}(X - \mathbb{E}(X))^{2} + \mathbb{E}(Y - \mathbb{E}(Y))^{2} + 2\mathbb{E}((X - \mathbb{E}(X))(Y - \mathbb{E}(Y)))$$

$$= Var(X) + Var(Y) + 2\mathbb{E}((X - \mathbb{E}(X))(Y - \mathbb{E}(Y)))$$



#### Intuition:

A measure of how much X, Y change together.



#### Intuition:

A measure of how much X, Y change together.

# Covariance

For two jointly distributed real-valued random variables X, Y with finite second moments, the covariance is defined as

$$Cov(X, Y) = \mathbb{E}((X - \mathbb{E}(X))(Y - \mathbb{E}(Y))).$$

# Simplification:

$$Cov(X, Y) = \mathbb{E}(XY) - \mathbb{E}(X)\mathbb{E}(Y).$$

$$(ov(Y)Y)^{2} = ((x \cdot Ex)(Y - EX) \cdot (x - EX)Y - (EX)Y - (EX)$$

E72<00

#### **Properties:**

- $Cov(X,X) = Var(X) \ge 0$ ;
- Cov(X, a) = 0, a is a constant;  $\rightarrow C_v(Y, a) = \mathbb{F}\left((X \mathbb{F}Y), (Q \mathbb{F}A)\right)$
- Cov(X, Y) = Cov(Y, X);
- $Cov(X + a, Y + b) = Cov(X, Y); \rightarrow Cov(Y + a, Y + b)$
- Cov(aX, bY) = abCov(X, Y).



#### **Properties:**

- $Cov(X,X) = Var(X) \geq 0$ ;
- Cov(X, a) = 0, a is a constant;
- (iii) Cov(X, Y) = Cov(Y, X);
- (v) Cov(X + a, Y + b) = Cov(X, Y);
- ( $\vee$ ) Cov(aX, bY) = abCov(X, Y).

#### **Corollary about variance:**

$$Var(aX+b) = a^{2}Var(X).$$

$$Vcr(a+b) = (or(a+b), a+b) =$$

#### Relate covariance to inner product:

# Inner product (not rigorous)

Inner product is a operator from a vector space V to a field F (use  $\mathbb{R}$  here as an example):  $\langle \cdot, \cdot \rangle \colon V \times V \to \mathbb{R}$  that satisfies:

- Symmetry: < x, y > = < y, x >;
- Linearity in the first argument:  $\langle ax + by, z \rangle = a \langle x, z \rangle + b \langle y, z \rangle$ ;
- Positive-definiteness:  $\langle x, x \rangle \geq 0$ , and  $\langle x, x \rangle = 0 \Leftrightarrow x = 0$

$$V = L^2$$
 space: a space of square-integrable  $V.V.$ 's  $[\pm \chi^2 < \infty]$ 



#### Relate covariance to inner product:

# Inner product (not rigorous)

Inner product is a operator from a vector space V to a field F (use  $\mathbb{R}$  here as an example):  $\langle \cdot, \cdot \rangle \colon V \times V \to \mathbb{R}$  that satisfies:

- Symmetry: < x, y > = < y, x >;
- Linearity in the first argument:  $\langle ax + by, z \rangle = a \langle x, z \rangle + b \langle y, z \rangle$ ;
- Positive-definiteness:  $\langle x, x \rangle \geq 0$ , and  $\langle x, x \rangle = 0 \Leftrightarrow x = 0$

#### Remark:

Covariance defines an inner product over the quotient vector space obtained by taking the subspace of random variables with finite second moment and identifying any two that differ by a constant.



# Properties inherited from the inner product space

Recall in Euclidean vector space:

- $\langle x, y \rangle = x^{\top} y = \sum_{i=1}^{n} x_i y_i;$
- $||x||_2 = \sqrt{\langle x, x \rangle};$
- $\langle x, y \rangle = ||x||_2 \cdot ||y||_2 \cos(\theta)$ .

#### Respectively:

- $\bullet$  < X, Y>= Cov(X, Y);
- $||X|| = \sqrt{Var(X)};$



# A substitute for $cos(\theta)$ :

#### Correlation

For two jointly distributed real-valued random variables X, Y with finite second moments, the correlation is defined as

$$Corr(X, Y) = \rho_{XY} = \frac{Cov(X, Y)}{\sqrt{Var(X) \cdot Var(Y)}}.$$



# A substitute for $cos(\theta)$ :

# Correlation

For two jointly distributed real-valued random variables X, Y with finite second moments, the correlation is defined as

$$Corr(X, Y) = \rho_{XY} = \frac{Cov(X, Y)}{\sqrt{Var(X) \cdot Var(Y)}}.$$

#### **Uncorrelatedness:**

$$X, Y \text{ uncorrelated} \Leftrightarrow Corr(X, Y) = 0.$$



# Cauchy-Schwarz inequality

$$|Cov(X, Y)| \leq \sqrt{Var(X)Var(Y)}.$$

Proof: Let 
$$X - \mathbb{E} X = \widehat{X}$$
,  $Y - \mathbb{E} Y = \widehat{Y}$ .

$$0 \leq \mathbb{E} (\widehat{X} + \widehat{Y})^2 = \widehat{E} \widehat{X}^2 + 2 + \widehat{E} (\widehat{X} \cdot \widehat{Y}) + \widehat{U}^2 = \widehat{Y}^2$$

Evadorities with the start of the



#### **Uncorrelatedness and Independence:**

Observe the relationship:

$$Corr(X, Y) = 0 \Leftrightarrow Cov(X, Y) = 0 \Leftrightarrow \mathbb{E}(XY) = \mathbb{E}(X)\mathbb{E}(X)$$

when  $X$  and  $Y$ 
 $Q_{Y} = Q_{Y} = Q_{Y} = Q_{Y}$ 

#### **Uncorrelatedness and Independence:**

Observe the relationship:

$$Corr(X, Y) = 0 \Leftrightarrow Cov(X, Y) = 0 \Leftrightarrow \mathbb{E}(XY) = \mathbb{E}(X)\mathbb{E}(X)$$

#### **Conclusions:**

- Independence ⇒ Uncorrelatedness

#### Remark:

Independence is a very strong assumption/property on the distribution.



# Special case: multivariate normal

#### Multivariate normal

A k-dimensional random vector  $\mathbf{X} = (X_1, X_2, \cdots, X_k)^{\top}$  follows a multivariate normal distribution  $\mathbf{X} \sim \mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$ , if

$$f_{\mathbf{X}}(x_1,\ldots,x_k) = \frac{\exp\left(-\frac{1}{2}(\mathbf{x}-\boldsymbol{\mu})^{\mathrm{T}}\boldsymbol{\Sigma}^{-1}(\mathbf{x}-\boldsymbol{\mu})\right)}{\sqrt{(2\pi)^k|\boldsymbol{\Sigma}|}},$$

where 
$$\underline{\mu} = \mathbb{E}[\mathbf{X}] = (\mathbb{E}[X_1], \mathbb{E}[X_2], \dots, \mathbb{E}[X_k])^{\top}$$
, and  $[\mathbf{\Sigma}]_{i,j} = \Sigma_{i,j} = Cov(X_i, X_j)$ .

#### **Observation:**

The distribution is decided by the covariance structure.  $\sum E(x-n) \cdot (x-n)^T$ 



Sin 
$$Z$$
 is PSD, a particular symmetric,

The general matrix  $V$  and disgonal  $\Delta = \begin{pmatrix} \lambda_1^2 & 0 \\ 0 & \lambda_d^2 \end{pmatrix}$ 

( $V^TV = VV^T = I$ )

Sit:

 $I = V\Delta V^T \iff V^T = V^T = \Delta$ .

Spectral decomposition

$$I^{-1} = V\Delta^{-1}V^{-1}V^{-1}$$

( $X^-M$ )  $I^{-1}(X^-M) = V^T(X^-M) = V^T(X^-M)$ 

$$= 2^{T} \Delta^{-1} 2 = \sum_{i=1}^{n} \lambda_{i}^{2} 2^{2}$$

$$= 3^{T} \Delta^{-1} 2 = \sum_{i=1}^{n} \lambda_{i}^{2} 2^{2}$$

$$= 3^{T} \Delta^{-1} 2 = \sum_{i=1}^{n} \lambda_{i}^{2} 2^{2}$$

$$f(x) = \prod_{i=1}^{m} \left( \frac{1}{12\pi \lambda_i} e^{ix} p \left( -\frac{2c^2}{2\lambda_0^2} \right) \right)$$

$$\rightarrow 2c \text{ are indepent.}$$

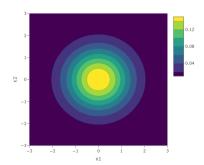
Clus

$$\underbrace{X_i, i = 1, \cdots k \text{ independent}}_{\text{k}} \Leftrightarrow f_{\mathbf{X}}(x_1, \dots, x_k) = \prod_{i=1}^{k} f_{X_i}(x_i)$$

$$\Leftrightarrow \mathbf{\Sigma} = \underbrace{\mathbf{X}}_{\text{k}} \Leftrightarrow Cov(X_i, X_j) = 0, i \neq j.$$

# **Example:**

• Corr(X, Y) = 0

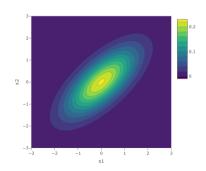




$$X_i, i = 1, \dots k$$
 independent  $\Leftrightarrow f_{\mathbf{X}}(x_1, \dots, x_k) = \prod_{i=1}^{N} f_{X_i}(x_i)$   
 $\Leftrightarrow \mathbf{\Sigma} = I_k \Leftrightarrow Cov(X_i, X_i) = 0, i \neq j.$ 

# **Example:**

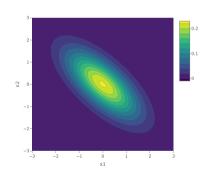
• Corr(X, Y) = 0.7



$$X_i, i = 1, \dots k$$
 independent  $\Leftrightarrow f_{\mathbf{X}}(x_1, \dots, x_k) = \prod_{i=1}^m f_{X_i}(x_i)$   
 $\Leftrightarrow \mathbf{\Sigma} = I_k \Leftrightarrow Cov(X_i, X_i) = 0, i \neq j.$ 

# **Example:**

• Corr(X, Y) = -0.7



#### Measures of a distribution:

- $\mathbb{E}(X^k)$ ,  $\mathbb{E}(X)$ , Var(X);
- Cov(X, Y) and Corr(X, Y).

#### Measures of a distribution:

- $\mathbb{E}(X^k)$ ,  $\mathbb{E}(X)$ , Var(X);
- Cov(X, Y) and Corr(X, Y).

# Tail probability: P(|X| > t)

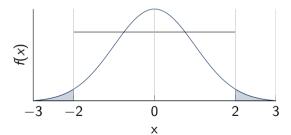


Figure: Probability density function of  $\mathcal{N}(0,1)$ 



# **Concentration inequalities:**

- Markov inequality
- Chebyshev inequality
- Chernoff bounds



# **Concentration inequalities:**

- Markov inequality
- Chebyshev inequality
- Chernoff bounds

# Markov inequality

Let X be a random variable that is non-negative (almost surely). Then, for every constant a > 0.

$$\mathbb{P}(X \geq a) \leq \frac{\mathbb{E}(X)}{a}.$$

Proof:

We use menoforist of Expectation, i.e.

 $Y = \alpha 1 - (x = \alpha)$   $E = \alpha 1 - (x = \alpha)$  E =

# Markov inequality (continued)

Let X be a random variable, then for every constant a > 0,

$$\mathbb{P}(|X| \geq a) \leq \frac{\mathbb{E}(|X|)}{a}.$$

#### A more general conclusion:

# Markov inequality (continued)

Let X be a random variable, if  $\Phi(x)$  is monotonically increasing on  $[0,\infty)$ , then for every constant a>0,

$$\mathbb{P}(|X| \geq a) = \mathbb{P}(\Phi(|X|) \geq \Phi(a)) \stackrel{\mathbb{E}(\Phi(|X|))}{\Phi(a)}.$$



# Chebyshev inequality

Let X be a random variable with finite expectation  $\mathbb{E}(X)$  and variance Var(X), then for every constant a > 0,

$$\mathbb{P}(|X - \mathbb{E}(X)| \ge a) \le \frac{Var(X)}{a^2},$$

or equivalently,

$$\mathbb{P}(|X - \mathbb{E}(X)| \ge a\sqrt{Var(X)}) \le \frac{1}{a^2}.$$

# **Example:**

Take a=2,

$$\mathbb{P}(|X - \mathbb{E}(X)| \ge 2\sqrt{Var(X)}) \le \frac{1}{4}$$
.



# Chernoff bound (general)

Let X be a random variable, then for  $t \geq 0$ ,

riable, then for 
$$t \geq 0$$
, by Morkov.
$$\mathbb{P}(X \geq a) \bigoplus \mathbb{P}(e^{t \cdot X} \geq e^{t \cdot a}) \bigotimes \frac{\mathbb{E}\left[e^{t \cdot X}\right]}{e^{t \cdot a}},$$

$$\left\{ \begin{array}{c} x \geq c \end{array} \right\} = \left\{ \begin{array}{c} \left\{ \cdot \times \right\} \\ \left\{ \cdot \times \right\} \end{array} \right\} = \left\{ \begin{array}{c} \left\{ \cdot \times \right\} \\ \left\{ \cdot \times \right\} \end{array} \right\} = \left\{ \begin{array}{c} \left\{ \cdot \times \right\} \\ \left\{ \cdot \times \right\} \end{array} \right\} = \left\{ \left\{ \cdot \times \right\} = \left\{ \left\{ \cdot \times \right\} \right\} = \left\{ \left\{ \cdot \times \right\} = \left\{ \left\{ \cdot \times \right\} \right\} = \left\{ \left\{ \cdot \times \right\} = \left\{ \left\{ \cdot \times \right\} \right\} = \left\{ \left\{ \cdot \times \right\} = \left\{ \left\{ \cdot \times \right\} \right\} = \left\{ \left\{ \cdot \times \right\} = \left\{ \left\{ \cdot \times \right\} \right\} = \left\{ \left\{ \cdot \times \right\} = \left\{ \left\{ \cdot \times \right\} \right\} = \left\{ \left\{ \cdot \times \right\} = \left\{ \left\{ \cdot \times \right\} \right\} = \left\{ \left\{ \left\{ \cdot \times \right\} \right\} = \left\{ \left\{ \cdot \times \right\} = \left\{ \left\{ \left\{ \cdot \times \right\} \right$$

tung ortinum of PHS above.

and

#### Remark:

This is especially useful when considering  $X = \sum_{i=1}^{n} X_i$  with  $X_i$ 's independent,

$$\mathbb{P}(X \geq a) \leq \inf_{t \geq 0} \frac{\mathbb{E}\left[\prod_{i} e^{t \cdot X_{i}}\right]}{e^{t \cdot a}} = \inf_{t \geq 0} e^{-t \cdot a} \prod_{i} \mathbb{E}\left[e^{t \cdot X_{i}}\right].$$



In particular, if  $X_i \stackrel{\text{sica}}{\approx} 2$ .  $P(XZC) \stackrel{\text{f}}{\approx} \inf \frac{(\mathbb{F}[e^{tZ}])^m}{e^{ta}}.$ 

e. 9.) 
$$\chi_i$$
  $\stackrel{c.cd}{\sim}$   $\underset{t}{\operatorname{Burn}}(\frac{1}{2})$ 

$$\sharp \left( \underbrace{e^{t \cdot \chi_i}}_{2} \right)^2 = \underbrace{\frac{e^{t \cdot e^{t}}}_{2}}_{2} \underbrace{\left( \underbrace{e^{t \cdot e^{t}}}_{2} \right)^n}_{e^{t \cdot n}}$$
Thus  $p\left( \underbrace{1}_{\alpha_i} \chi_{i^2} \chi_{i^2} \right) \leq \inf_{t > 0} \underbrace{\left( \underbrace{e^{t \cdot e^{t}}}_{2} \right)^n}_{e^{t \cdot n}}$ 

# **Problem Set**

Problem 1: Let

$$f_{X,Y}(x,y) = \begin{cases} 2 & 0 \le y \le x \le 1 \\ 0 & \text{otherwise} \end{cases}$$

compute Cov(X, Y).

**Problem 2:** For  $X \sim \mathcal{N}(0,1)$ , compute the Chernoff bound.