

Statistical Sciences

DoSS Summer Bootcamp Probability Module 7

Ichiro Hashimoto

University of Toronto

July 23, 2024

Recap

Learnt in last module:

- Covariance
 - ▷ Covariance as an inner product
 - ▶ Correlation
 - ▷ Cauchy-Schwarz inequality
 - ▶ Uncorrelatedness and Independence
- Concentration
 - ▶ Markov's inequality
 - ▷ Chebyshev's inequality
 - ▷ Chernoff bounds

Outline

- Stochastic convergence
 - ▷ Convergence in distribution
 - ▷ Convergence in probability
 - ▷ Convergence almost surely
 - ▷ Convergence in L^p
 - ▶ Relationship between convergences

Recall: Convergence

Convergence of a sequence of numbers

A sequence a_1, a_2, \cdots converges to a limit a if

$$\lim_{n\to\infty}a_n=a.$$

That is, for any $\epsilon > 0$, there exists an $N(\epsilon)$ such that

$$|a_n-a|<\epsilon, \quad \forall n>N(\epsilon).$$

Recall: Convergence

Convergence of a sequence of numbers

A sequence a_1, a_2, \cdots converges to a limit a if

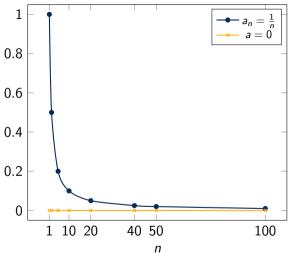
$$\lim_{n\to\infty}a_n=a.$$

That is, for any $\epsilon > 0$, there exists an $N(\epsilon)$ such that

$$|a_n - a| < \epsilon, \quad \forall n > N(\epsilon).$$

Example: $a_n = \frac{1}{n}$, $\forall \epsilon > 0$, take $N(\epsilon) = \lceil \frac{1}{\epsilon} \rceil$, then for $n > N(\epsilon)$,

$$|a_n-0|=a_n<\epsilon, \quad \lim_{n\to\infty}a_n=0.$$



- Capture the property of a series as $n \to \infty$;
- The limit is something where the series concentrate for large n;
- $|a_n a|$ quantifies the closeness of the series and the limit.

Observation: closeness of random variables

Sample mean of i.i.d. random variables

For i.i.d. random variables X_i , $i=1,\cdots,n$ with $\mathbb{E}(X_i)=\mu$, $Var(X_i)=\sigma^2$, then for the sample mean $\bar{X}=\frac{1}{n}\sum_{i=1}^n X_i$,

$$\mathbb{E}(\bar{X}) = \mu, \quad Var(\bar{X}) = \frac{\sigma^2}{n}.$$

Proof:

Example:

Further suppose X_i , $i=1,\cdots,n$ i.i.d. with distribution $\mathcal{N}(\mu,\sigma^2)$, then $\bar{X}\sim\mathcal{N}(\mu,\frac{\sigma^2}{n})$, so we can draw the probability density plot of \bar{X} .

Example:

Further suppose X_i , $i=1,\cdots,n$ i.i.d. with distribution $\mathcal{N}(\mu,\sigma^2)$, then $\bar{X}\sim\mathcal{N}(\mu,\frac{\sigma^2}{n})$, so we can draw the probability density plot of \bar{X} .

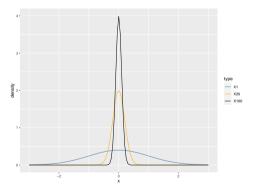


Figure: Probability density curve of sample mean of normal distribution

Intuition:

- Series of numbers $a_n \Rightarrow \text{Series of random variables } X_n$;
- Limit $a \Rightarrow \text{Limit } X$;
- How to quantify the closeness? $(|X_n X|?)$

Intuition:

- Series of numbers $a_n \Rightarrow Series of random variables <math>X_n$;
- Limit $a \Rightarrow \text{Limit } X$;
- How to quantify the closeness? $(|X_n X|?)$

Pointwise convergence / Sure convergence

Suppose random variables X_n and X are defined over the same probability space, then we say X_n converges to X pointwise if

$$\lim_{n\to\infty} X_n(\omega) = X(\omega), \ \forall \omega \in \Omega.$$

Intuition:

- Series of numbers $a_n \Rightarrow Series of random variables <math>X_n$;
- Limit $a \Rightarrow \text{Limit } X$;
- How to quantify the closeness? $(|X_n X|?)$

Pointwise convergence / Sure convergence

Suppose random variables X_n and X are defined over the same probability space, then we say X_n converges to X pointwise if

$$\lim_{n\to\infty} X_n(\omega) = X(\omega), \ \forall \omega \in \Omega.$$

Remark:

Incorporate probability measure in some sense.

Alternatives of describing the closeness:

- Utilize CDF: $F_{X_n}(x) F_X(x)$;
- Utilize probability of an event: $\mathbb{P}(|X_n X| > \epsilon)$;
- Utilize the probability over all ω : $\mathbb{P}(\lim_{n\to\infty} X_n(\omega) = X(\omega))$;
- Utilize mean/moments: $\mathbb{E}|X_n X|^p$.

Convergence in distribution

A sequence X_1, X_2, \cdots of real-valued random variables is said to converge in distribution, or converge weakly to a random variable X if

$$\lim_{n\to\infty}F_n(x)=F(x),$$

for every number $x \in \mathbb{R}$ at which $F(\cdot)$ is continuous. Here, $F_n(\cdot)$ and $F(\cdot)$ are the cumulative distribution functions of the random variables X_n and X, respectively.

Notation:

$$X_n \stackrel{d}{\to} X$$
, $X_n \stackrel{\mathcal{D}}{\to} X$, $X_n \Rightarrow X$.

Convergence in distribution

A sequence X_1, X_2, \cdots of real-valued random variables is said to converge in distribution, or converge weakly to a random variable X if

$$\lim_{n\to\infty}F_n(x)=F(x),$$

for every number $x \in \mathbb{R}$ at which $F(\cdot)$ is continuous. Here, $F_n(\cdot)$ and $F(\cdot)$ are the cumulative distribution functions of the random variables X_n and X, respectively.

Notation:

$$X_n \stackrel{d}{\to} X$$
, $X_n \stackrel{\mathcal{D}}{\to} X$, $X_n \Rightarrow X$.

Remark:

 X_n and X do not need to be defined on the same probability space.

Example:

Let $X_n = Z + \frac{1}{n}$, where $Z \sim \mathcal{N}(0,1)$, then

- $X_n \stackrel{d}{\rightarrow} Z$,
- $X_n \stackrel{d}{\rightarrow} -Z$,
- $X_n \stackrel{d}{\to} Y$, $Y \sim \mathcal{N}(0,1)$.

Proof:

Convergence in probability

A sequence X_n of random variables converges in probability towards the random variable X if for all $\epsilon > 0$,

$$\lim_{n\to\infty}\mathbb{P}\big(|X_n-X|>\epsilon\big)=0.$$

Notation: $X_n \stackrel{P}{\to} X$, $X_n \stackrel{P}{\to} X$.

Remark:

 X_n and X need to be defined on the same probability space.

Examples:

• Let $X_n = Z + \frac{1}{n}$, where $Z \sim \mathcal{N}(0,1)$, then $X_n \xrightarrow{P} Z$.

Proof:

• Let $X_n = Z + Y_n$, where $Z \sim \mathcal{N}(0,1)$, $\mathbb{E}(|Y_n|) = \frac{1}{n}$, then $X_n \xrightarrow{P} Z$.

Proof:

Convergence almost surely

A sequence X_n of random variables converges almost surely or almost everywhere or with probability 1 or strongly towards X means that

$$\mathbb{P}\left(\lim_{n\to\infty}X_n=X\right)=\mathbb{P}\left(\omega\in\Omega:\lim_{n\to\infty}X_n(\omega)=X(\omega)\right)=1.$$

Notation: $X_n \xrightarrow{a.s.} X$.

Remark:

 X_n and X need to be defined on the same probability space.

Examples:

• Let $X_n = Z + \frac{1}{n}$, where $Z \sim \mathcal{N}(0,1)$, then $X_n \xrightarrow{a.s.} Z$.

Proof:

• Let
$$X_n=Z+Y_n$$
, where $Z\sim \mathcal{N}(0,1)$, $\mathbb{E}(|Y_n|)=\frac{1}{n}$, do we have $X_n\xrightarrow{a.s.}Z$?

Proof:

Convergence in L^p

A sequence $\{X_n\}$ of random variables converges in L_p to a random variable $X_n \neq 1$, if

$$\lim_{n\to\infty}\mathbb{E}|X_n-X|^p=0$$

Notation: $X_n \xrightarrow{L^p} X$.

Remark:

 X_n and X need to be defined on the same probability space.

Examples:

• Let $X_n = Z + \frac{1}{n}$, where $Z \sim \mathcal{N}(0,1)$, then $X_n \xrightarrow{L^p} Z$.

Proof:

• Let
$$X_n = Z + Y_n$$
, where $Z \sim \mathcal{N}(0,1)$, $\mathbb{E}(|Y_n|^p) = \frac{1}{n}$, then $X_n \xrightarrow{L^p} Z$.

Proof:

Recall: A random variable $X \in L^p$ if $||X||_{L^p} = (E|X|^p)^{1/p} < \infty$.

$$X_n o X$$
 in L^p if $\lim_{n o \infty} \|X_n - X\|_{L^p} = 0$

Monotonicity of *L*^p Convergence

If q > p > 0, L^q convergence implies L^p convergence

Proof:

Recall: X_n converges to X in probability if for any $\epsilon > 0$ $\lim_{n \to \infty} P(|X_n - X| > \epsilon) = 0$.

L^p convergence implies Convergence in Probability

If $X_n \to X$ in L^p , then $X_n \to X$ in probability.

Proof:

Recall: X_n converges to X in probability if for any $\epsilon > 0$ $\lim_{n \to \infty} P(|X_n - X| > \epsilon) = 0$.

a.s. Convergence implies Convergence in Probability

If $X_n \to X$ almost surely, then $X_n \to X$ in probability.

Proof:

Recall: X_n converges to X in distribution if for any continuity point x of $P(X \le x)$, $\lim_{n \to \infty} P(X_n \le x) = P(X \le x)$ holds.

Convergence in Probability implies Convergence in Distribution

If $X_n \to X$ in probability, then $X_n \to X$ in distribution.

Proof: Omitted

Relationship between convergences (on complete probability space):

$$egin{array}{cccc} L^s & & \stackrel{L^r}{\longrightarrow} & & \\ \longrightarrow & & > r \geq 1 & & & \\ & & & \downarrow & & \\ & & \longrightarrow & \Rightarrow & \stackrel{d}{\longrightarrow} & \Rightarrow & \stackrel{d}{\longrightarrow} & \end{array}$$

Figure: relationship between convergences

Highlights:

• Almost sure convergence implies convergence in probability:

$$X_n \xrightarrow{\text{a.s.}} X \Rightarrow X_n \xrightarrow{P} X;$$

• Convergence in probability implies convergence in distribution:

$$X_n \xrightarrow{P} X \Rightarrow X_n \xrightarrow{d} X;$$

• If X_n converges in distribution to a constant c, then X_n converges in probability to c:

$$X_n \xrightarrow{d} c \Rightarrow X_n \xrightarrow{P} c$$
, provided c is a constant.

Problem Set

Problem 1: Prove that on a complete probability space, if $X_n \xrightarrow{L^p} X$, then $X_n \xrightarrow{P} X$. (Hint: use Markov's inequality)

Problem 2: Let X_1, \dots, X_n be i.i.d. random variables with Bernoulli(p) distribution, and $X \sim Bernoulli(p)$ is defined on the same probability space, independent with X_i 's. Does X_n converge in probability to X?

Problem 3: Give an example where X_n converges in distribution to X, but not in probability.

| ロ ト 4 週 ト 4 夏 ト 4 夏 ト | 夏 | 夕 Q @