

Statistical Sciences

DoSS Summer Bootcamp Probability Module 7

Ichiro Hashimoto

University of Toronto

July 23, 2024

 I ▶ < 클 ▶ < 클 ▶ < 클 ▶ 클</td>
 ∽) < <>

 July 23, 2024
 1/20

Recap

Learnt in last module:

• Covariance

- $\triangleright~$ Covariance as an inner product
- ▷ Correlation
- Cauchy-Schwarz inequality
- ▷ Uncorrelatedness and Independence

() < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < ()

July 23, 2024

э

2/20

- Concentration
 - ▷ Markov's inequality
 - ▷ Chebyshev's inequality
 - Chernoff bounds

Outline

- Stochastic convergence
 - \triangleright Convergence in distribution
 - ▷ Convergence in probability
 - Convergence almost surely
 - \triangleright Convergence in L^p
 - Relationship between convergences

Recall: Convergence

Convergence of a sequence of numbers

A sequence a_1, a_2, \cdots converges to a limit *a* if

 $\lim_{n\to\infty}a_n=a.$

That is, for any $\epsilon > 0$, there exists an $N(\epsilon)$ such that

 $|a_n-a|<\epsilon,\quad\forall n>N(\epsilon).$

Recall: Convergence

□ ▶ < 클 ▶ < 클 ▶ < 클 ▶ 를 키익은 July 23, 2024 4/20

- Capture the property of a series as $n \to \infty$;
- The limit is something where the series concentrate for large *n*;
- $|a_n a|$ quantifies the closeness of the series and the limit.

Observation: closeness of random variables

Sample mean of i.i.d. random variables For i.i.d) random variables X_i , $i = 1, \dots, n$ with $\mathbb{E}(X_i) = \mu$, $Var(X_i) = \sigma^2$, then for the sample mean $\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$ $\mathbb{E}(\bar{X}) = \mu, \quad Var(\bar{X}) = \frac{\sigma^2}{n}.$ $\mathbb{E}(\overline{x}) = \mathbb{E}\left(\frac{1}{n}\sum_{i=1}^{n} x_{i}\right) \bigoplus \frac{1}{n}\sum_{i=1}^{n} \mathbb{E}_{x_{i}} = \frac{1}{n} M^{n} M^{n} M^{n}.$ **Proof:** $\operatorname{Ver}(\overline{X}) = \operatorname{E}(\overline{X} - m)^{2} = \operatorname{E}\left(\frac{1}{m} \sum_{i=1}^{m} X_{i} - m\right)^{2}$ $= \mathbb{E}\left(\frac{1}{m}\sum_{i=1}^{m}(x_{i}-m)\right)^{2}$

6/20

$$= \frac{1}{m^{2}} \mathbb{E} \left(\frac{1}{\sum_{i=1}^{n}} (Y_{i} - M_{i}) \right)^{2}$$

$$= \frac{1}{n^{2}} \mathbb{E} \left(\frac{1}{\sum_{i=1}^{n}} (Y_{i} - M_{i})^{2} + \frac{1}{n^{2}} \mathbb{E} \left[\sum_{i=1}^{n} (Y_{i} - M_{i})^{2} + \frac{1}{n^{2}} \sum_{i=1}^{n} (Y_{i} - M_{i}) (X_{i} - M_{i}) \right]$$

$$= \frac{1}{n^{2}} \frac{1}{n^{2}} \mathbb{E} \left((Y_{i} - M_{i})^{2} + \frac{1}{n^{2}} \sum_{i=1}^{n} \mathbb{E} \left((Y_{i} - M_{i}) (X_{i} - M_{i}) - \frac{1}{N_{i} + K + 1} \right) \right]$$

$$= \frac{n^{2}}{n^{2}} + \frac{1}{n^{2}} \sum_{i=1}^{n} \left(\mathbb{E} (X_{i} - M_{i}) \right) \left[\mathbb{E} (X_{i} - M_{i}) - \frac{1}{N_{i} + K + 1} \right]$$

$$= \frac{n^{2}}{n^{2}} + \frac{1}{n^{2}} \sum_{i=1}^{n} \left(\mathbb{E} (X_{i} - M_{i}) \right) \left[\mathbb{E} (X_{i} - M_{i}) - \frac{1}{N_{i} + K + 1} \right]$$

= 02 m/

Example:

Further suppose X_{i} , $i = 1, \dots, n$ i.i.d. with distribution $\mathcal{N}(\mu, \sigma^2)$, then $\overline{X} \sim \mathcal{N}(\mu, \frac{\sigma^2}{n})$, so we can draw the probability density plot of \overline{X} .

Example:

Further suppose X_i , $i = 1, \dots, n$ i.i.d. with distribution $\mathcal{N}(\mu, \sigma^2)$, then $\bar{X} \sim \mathcal{N}(\mu, \frac{\sigma^2}{n})$, so we can draw the probability density plot of \bar{X} .

Figure: Probability density curve of sample mean of normal distribution

□ ▶ < ⓓ ▶ < 볼 ▶ < 볼 ▶ 볼 ∽ < ⊘ July 23, 2024 7/20

Intuition:

- Series of numbers $a_n \Rightarrow$ Series of random variables X_n ;
- Limit $a \Rightarrow$ Limit X;
- How to quantify the closeness? $(|X_n X|?)$

Intuition:

- Series of numbers $a_n \Rightarrow$ Series of random variables X_n :
- Limit $a \Rightarrow$ Limit X:
- How to quantify the closeness? $(|X_n X|?)$

Pointwise convergence / Sure convergence

Suppose random variables X_n and X are defined over the same probability space, then we say X_n converges to X pointwise if a port $\lim_{n\to\infty}X_n(\omega)=X(\omega), \ \forall \omega\in\Omega.$ Guar wis find by (W) is just a deterministic sequencz. うっつ 川 二 キャット ビー・ ショー July 23, 2024

Intuition:

- Series of numbers $a_n \Rightarrow$ Series of random variables X_n ;
- Limit $a \Rightarrow$ Limit X;
- How to quantify the closeness? $(|X_n X|?)$

Pointwise convergence / Sure convergence

Suppose random variables X_n and X are defined over the same probability space, then we say X_n converges to X pointwise if

$$\lim_{n\to\infty}X_n(\omega)=X(\omega), \,\,\forall\omega\in\Omega.$$

8/20

Remark:

Incorporate probability measure in some sense.

Alternatives of describing the closeness:

- Utilize CDF: $F_{X_n}(x) F_X(x)$;
- Utilize probability of an event: $\mathbb{P}(|X_n X| > \epsilon)$;
- Utilize the probability over all ω : $\mathbb{P}(\lim_{n\to\infty} X_n(\omega) = X(\omega));$
- Utilize mean/moments: $\mathbb{E}|X_n X|^p$.

Convergence in distribution

A sequence X_1, X_2, \cdots of real-valued random variables is said to converge in distribution, or converge weakly to a random variable X if

$$\lim_{n\to\infty}F_n(x)=F(x),$$

for every number $x \in \mathbb{R}$ at which $F(\cdot)$ is continuous. Here, $F_n(\cdot)$ and $F(\cdot)$ are the cumulative distribution functions of the random variables X_n and X, respectively.

Notation:

$$X_n \xrightarrow{a} X, \quad X_n \xrightarrow{D} X, \quad X_n \Rightarrow X.$$

Convergence in distribution

A sequence X_1, X_2, \cdots of real-valued random variables is said to converge in distribution, or converge weakly to a random variable X if

$$\lim_{n\to\infty}F_n(x)=F(x),$$

distributions.

July 23, 2024

10/20

for every number $x \in \mathbb{R}$ at which $F(\cdot)$ is continuous. Here, $F_n(\cdot)$ and $F(\cdot)$ are the cumulative distribution functions of the random variables X_n and X, respectively.

Notation:

$$X_n \xrightarrow{d} X, \quad X_n \xrightarrow{\mathcal{D}} X, \quad X_n \Rightarrow X.$$

Remark:

 X_n and X do not need to be defined on the same probability space. UNIVERSITY OF β_{e} compared it's about closeness of

UNIVERSITY OF TORONTO

S.m
$$\overline{P}$$
 TS continuous on \mathbb{R} ,
 $(m \overline{P}(x-\overline{n}) = \overline{P}(x) = \mathbb{P}(2 \leq x)$
 $n \neq 0$

2.) Sim 2 ~
$$N(0,1)$$
 is symmetric,
 $|P(-2 \le x) = |P(2 \le x)|$

3) Sime
$$\gamma \sim N^{(0)(.)}$$

 $p(\gamma \leq x) = p(2 \leq x)$

Convergence in probability

A sequence X_n of random variables converges in probability towards the random variable X if for all $\epsilon > 0$,

$$\lim_{n\to\infty}\mathbb{P}\big(|X_n-X|>\epsilon\big)=0.$$

Notation: $X_n \xrightarrow{P} X$, $X_n \xrightarrow{P} X$.

Remark: X_n and X need to be defined on the same probability space.

Examples:

• Let $X_n = Z + \frac{1}{n}$, where $Z \sim \mathcal{N}(0, 1)$, then $X_n \xrightarrow{P} Z$. **Proof:** Let $\stackrel{\forall}{\epsilon}_{\geq 0}$. $\left[\mathcal{P} \left(\begin{array}{c} | \chi_n - 2 | \ \geq \epsilon \end{array} \right) = \left[\mathcal{P} \left(\begin{array}{c} -\frac{1}{n} > \epsilon \end{array} \right) = \mathcal{O} \right] \right]$ for an m>E' The $\left[P\left(|Y_{n}-2|>\varepsilon\right)\rightarrow 0 \text{ at } |Y_{n}\xrightarrow{p} 2\right]$ • Let $X_n = Z + Y_n$, where $Z \sim \mathcal{N}(0,1)$, $\mathbb{E}(|Y_n|) = \frac{1}{n}$, then $X_n \xrightarrow{P} Z$. Proof: $p\left(|\chi_{n}-2| \geq e \right) = p\left(|\chi_{n}| \geq e \right) \stackrel{\mu_{erker}}{\leq} e^{-l} \mathbb{E} |\chi_{n}| = \frac{l}{me}$

Stochastic convergence It looks like pointvise convergence hat slight by G.S. Convergence allows (in Xu(W) + X(W) atos Xu(W) + X(W) on a ret with probability O. Convergence almost surely A sequence X_n of random variables converges almost surely or almost everywhere or with probability 1 or strongly towards X means that $\mathbb{P}\left(\lim_{n\to\infty}X_n=X\right)=\mathbb{P}\left(\omega\in\Omega:\lim_{n\to\infty}X_n(\omega)=X(\omega)\right)=1.$ Notation: $X_n \xrightarrow{a.s.} X$. $\chi_n \xrightarrow{a.c.} \chi$, $\chi_{\iota} \xrightarrow{a.c.} \chi$

Remark:

 X_n and X need to be defined on the same probability space.

Examples:

• Let $X_n = Z + \frac{1}{n}$, where $Z \sim \mathcal{N}(0, 1)$, then $X_n \xrightarrow{a.s.} Z$. **Proof:** For $\gamma \quad \mathcal{U} \in \Omega$. $\lim_{n \to \infty} \chi_n(\omega) = -2(\omega) + \lim_{n \to \infty} \frac{1}{n} = -2(\omega)$ thus $P\left(\lim_{n \to \infty} \chi_n(\omega) = \chi(\omega)\right) = 1$.

• Let $X_n = Z + Y_n$, where $Z \sim \mathcal{N}(0, 1)$, $\mathbb{E}(|Y_n|) = \frac{1}{n}$, do we have $X_n \xrightarrow{a.s.} Z$? **Proof:** We already know $Y_n \xrightarrow{T} Z$ N_{o_j} Y_n does not coverge to Z a.s.

Convergence in L^p

A sequence $\{X_n\}$ of random variables converges in L_p to a random variable X, $p \ge 1$, if

$$\lim_{n\to\infty}\mathbb{E}|X_n-X|^p=0$$

Notation: $X_n \xrightarrow{L^p} X$.

Remark: X_n and X need to be defined on the same probability space.

Examples:

• Let
$$X_n = Z + \frac{1}{n}$$
, where $Z \sim \mathcal{N}(0, 1)$, then $X_n \xrightarrow{L^p} Z$.

Proof:

$$\mathbb{E}\left[Y_{n}-2\right]^{p}=\mathbb{E}\left(\frac{1}{n}\right)^{p}=\frac{1}{n^{p}}\rightarrow0$$

• Let
$$X_n = Z + Y_n$$
, where $Z \sim \mathcal{N}(0, 1)$, $\mathbb{E}(|Y_n|^{\mathcal{D}}) = \frac{1}{n}$, then $X_n \xrightarrow{L^p} Z$.
Proof:
 $\mathbb{E} |X_n - 2|^{\mathcal{P}} = \mathbb{E} |X_n|^{\mathcal{P}} = \frac{1}{n} \longrightarrow 0$

Recall: A random variable
$$X \in L^p$$
 if $||X||_{L^p} = (E|X|^p)^{1/p} \not < \infty$.
 $X_n \to X$ in L^p if $\lim_{n\to\infty} ||X_n - X||_{L^p} = 0$

Monotonicity of L^p Convergence

If q > p > 0, L^q convergence implies L^p convergence

Proof: Lyapinov inequality

$$\begin{pmatrix} \left| \mathbf{F} \right| \left| \mathbf{X} \right|^{p} \end{pmatrix}^{V_{p}} \leq \left(\left| \mathbf{F} \right| \left| \mathbf{X} \right|^{2} \right)^{V_{q}} \quad \text{if } o$$

E L' nors

Recall: X_n converges to X in probability if for any $\epsilon > 0 \lim_{n\to\infty} P(|X_n - X| > \epsilon) = 0$.

 L^{p} convergence implies Convergence in Probability

If $X_n \to X$ in L^p , then $X_n \to X$ in probability.

Proof: By Morkov in-Enality $\mathbb{P}\left(|X_{n} \rightarrow \langle \rangle \geq \varepsilon\right) = \mathbb{P}\left(|X_{n} \rightarrow \langle \rangle \geq \varepsilon^{p}\right)$ $\frac{\text{Hostor}}{2} = \frac{\text{E} \left[\chi_{1} - \chi_{1} \right]^{p}}{C^{p}} \longrightarrow O \quad \text{she}}{\chi_{1} - \chi_{1} L^{p}}$

Recall: X_n converges to X in probability if for any $\epsilon > 0 \lim_{n \to \infty} P(|X_n - X| > \epsilon) = 0$.

a.s. Convergence implies Convergence in Probability

If $X_n o X$ almost surely, then $X_n o X$ in probability.

Gmit

Proof:

Recall: X_n converges to X in distribution if for any continuity point x of $P(X \le x)$, $\lim_{n\to\infty} P(X_n \le x) = P(X \le x)$ holds.

Convergence in Probability implies Convergence in Distribution

If $X_n \to X$ in probability, then $X_n \to X$ in distribution.

Proof: Omitted

Relationship between convergences (on complete probability space):

Figure: relationship between convergences

□ ▶ < ⓓ ▶ < ≧ ▶ < ≧ ▶ < ≧ ▶ July 23, 2024 22 / 20

Highlights:

• Almost sure convergence implies convergence in probability:

$$X_n \xrightarrow{\text{a.s.}} X \Rightarrow X_n \xrightarrow{P} X;$$

• Convergence in probability implies convergence in distribution:

$$X_n \xrightarrow{P} X \Rightarrow X_n \xrightarrow{d} X;$$

• If X_n converges in distribution to a constant c, then X_n converges in probability to c:

$$X_n \stackrel{d}{\rightarrow} c \quad \Rightarrow \quad X_n \stackrel{P}{\rightarrow} c, \quad \text{provided } c \text{ is a constant.}$$

 □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ∧ ○</td>

 July 23, 2024
 23 / 20

Problem Set

Problem 1: Prove that on a complete probability space, if $X_n \xrightarrow{L^p} X$, then $X_n \xrightarrow{P} X$. (Hint: use Markov's inequality)

Problem 2: Let X_1, \dots, X_n be i.i.d. random variables with *Bernoulli*(*p*) distribution, and $X \sim Bernoulli(p)$ is defined on the same probability space, independent with X_i 's. Does X_n converge in probability to X?

Problem 3: Give an example where X_n converges in distribution to X, but not in probability.

