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Recap

Learnt in last module:

• Covariance
◃ Covariance as an inner product
◃ Correlation
◃ Cauchy-Schwarz inequality
◃ Uncorrelatedness and Independence

• Concentration
◃ Markov’s inequality
◃ Chebyshev’s inequality
◃ Chernoff bounds
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Outline

• Stochastic convergence
◃ Convergence in distribution
◃ Convergence in probability
◃ Convergence almost surely
◃ Convergence in Lp

◃ Relationship between convergences
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Stochastic Convergence
Recall: Convergence

Convergence of a sequence of numbers
A sequence a1, a2, · · · converges to a limit a if

lim
n→∞

an = a.

That is, for any ϵ > 0, there exists an N(ϵ) such that

|an − a| < ϵ, ∀n > N(ϵ).

Example: an = 1
n , ∀ϵ > 0, take N(ϵ) = ⌈1

ϵ ⌉, then for n > N(ϵ),

|an − 0| = an < ϵ, lim
n→∞

an = 0.
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Stochastic Convergence
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• Capture the property of a series as
n → ∞;

• The limit is something where the
series concentrate for large n;

• |an − a| quantifies the closeness of the
series and the limit.
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Stochastic Convergence
Observation: closeness of random variables
Sample mean of i.i.d. random variables
For i.i.d. random variables Xi, i = 1, · · · , n with E(Xi) = µ, Var(Xi) = σ2, then for the
sample mean X̄ = 1

n
∑n

i=1 Xi,

E(X̄) = µ, Var(X̄) = σ2

n .

Proof:

July 23, 2024 6 / 20

&
1

↓
in dependent

and identically

distributed .

E(X) = E)EY)@tExi =m =
m.

linewity

Var() : (x-n)" =Ex -u)2
= E)t(Xi -u))2



= Ex : -us)

--+
(i-u)(X -M).

=

+ )(Xi-M
.

)

= Var (Xi) Not tht1X5 are

2p2
independent

=+ ] (e)
-

= D

- E



Stochastic Convergence
Example:
Further suppose Xi, i = 1, · · · , n i.i.d. with distribution N (µ,σ2), then X̄ ∼ N (µ, σ

2
n ),

so we can draw the probability density plot of X̄.

Figure: Probability density curve of sample mean of normal distribution
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Stochastic Convergence
Intuition:

• Series of numbers an ⇒ Series of random variables Xn;
• Limit a ⇒ Limit X;
• How to quantify the closeness? (|Xn − X|?)

Pointwise convergence / Sure convergence
Suppose random variables Xn and X are defined over the same probability space, then
we say Xn converges to X pointwise if

lim
n→∞

Xn(ω) = X(ω), ∀ω ∈ Ω.

Remark:
Incorporate probability measure in some sense.
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Stochastic Convergence

Alternatives of describing the closeness:
• Utilize CDF: FXn(x)− FX(x);
• Utilize probability of an event: P(|Xn − X| > ϵ);
• Utilize the probability over all ω: P(limn→∞ Xn(ω) = X(ω));
• Utilize mean/moments: E|Xn − X|p.
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Stochastic Convergence

Convergence in distribution
A sequence X1,X2, · · · of real-valued random variables is said to converge in
distribution, or converge weakly to a random variable X if

lim
n→∞

Fn(x) = F(x),

for every number x ∈ R at which F(·) is continuous. Here, Fn(·) and F(·) are the
cumulative distribution functions of the random variables Xn and X, respectively.

Notation:
Xn

d−→ X, Xn
D−→ X, Xn ⇒ X.

Remark:
Xn and X do not need to be defined on the same probability space.
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Stochastic Convergence

Example:
Let Xn = Z + 1

n , where Z ∼ N (0, 1), then
• Xn

d−→ Z,
• Xn

d−→ −Z,
• Xn

d−→ Y, Y ∼ N (0, 1).

Proof:
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Stochastic Convergence

Convergence in probability
A sequence Xn of random variables converges in probability towards the random
variable X if for all ϵ > 0,

lim
n→∞

P
(
|Xn − X| > ϵ

)
= 0.

Notation: Xn
p−→ X, Xn

P−→ X.
Remark:
Xn and X need to be defined on the same probability space.
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Stochastic Convergence
Examples:

• Let Xn = Z + 1
n , where Z ∼ N (0, 1), then Xn

P−→ Z.
Proof:

• Let Xn = Z + Yn, where Z ∼ N (0, 1), E(|Yn|) = 1
n , then Xn

P−→ Z.
Proof:
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Stochastic convergence

Convergence almost surely
A sequence Xn of random variables converges almost surely or almost everywhere or
with probability 1 or strongly towards X means that

P
(
lim

n→∞
Xn = X

)
= P

(
ω ∈ Ω : lim

n→∞
Xn(ω) = X(ω)

)
= 1.

Notation: Xn
a.s.−−→ X.

Remark:
Xn and X need to be defined on the same probability space.
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Stochastic convergence
Examples:

• Let Xn = Z + 1
n , where Z ∼ N (0, 1), then Xn

a.s.−−→ Z.
Proof:

• Let Xn = Z + Yn, where Z ∼ N (0, 1), E(|Yn|) = 1
n , do we have Xn

a.s.−−→ Z?
Proof:
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Stochastic convergence

Convergence in Lp

A sequence {Xn} of random variables converges in Lp to a random variable X, p ≥ 1, if

lim
n→∞

E|Xn − X|p = 0

Notation: Xn
Lp
−→ X.

Remark:
Xn and X need to be defined on the same probability space.
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Stochastic convergence
Examples:

• Let Xn = Z + 1
n , where Z ∼ N (0, 1), then Xn

Lp
−→ Z.

Proof:

• Let Xn = Z + Yn, where Z ∼ N (0, 1), E(|Yn|p) = 1
n , then Xn

Lp
−→ Z.

Proof:
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Stochastic convergence
Recall: A random variable X ∈ Lp if ∥X∥Lp = (E|X|p)1/p < ∞.

Xn → X in Lp if limn→∞ ∥Xn − X∥Lp = 0

Monotonicity of Lp Convergence
If q > p > 0, Lq convergence implies Lp convergence

Proof:
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Stochastic convergence
Recall: Xn converges to X in probability if for any ϵ > 0 limn→∞ P(|Xn − X| > ϵ) = 0.

Lp convergence implies Convergence in Probability
If Xn → X in Lp, then Xn → X in probability.

Proof:
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Stochastic convergence
Recall: Xn converges to X in probability if for any ϵ > 0 limn→∞ P(|Xn − X| > ϵ) = 0.

a.s. Convergence implies Convergence in Probability
If Xn → X almost surely, then Xn → X in probability.

Proof:
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Stochastic convergence
Recall: Xn converges to X in distribution if for any continuity point x of P(X ≤ x),
limn→∞ P(Xn ≤ x) = P(X ≤ x) holds.

Convergence in Probability implies Convergence in Distribution
If Xn → X in probability, then Xn → X in distribution.

Proof: Omitted
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Stochastic convergence

Relationship between convergences (on complete probability space):

Figure: relationship between convergences
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Stochastic convergence

Highlights:
• Almost sure convergence implies convergence in probability:

Xn
a.s.−−→ X ⇒ Xn

P−→ X;

• Convergence in probability implies convergence in distribution:

Xn
P−→ X ⇒ Xn

d−→ X;

• If Xn converges in distribution to a constant c, then Xn converges in probability to
c:

Xn
d−→ c ⇒ Xn

P−→ c, provided c is a constant.
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Problem Set

Problem 1: Prove that on a complete probability space, if Xn
Lp
−→ X, then Xn

P−→ X.
(Hint: use Markov’s inequality)
Problem 2: Let X1, · · · ,Xn be i.i.d. random variables with Bernoulli(p) distribution,
and X ∼ Bernoulli(p) is defined on the same probability space, independent with Xi’s.
Does Xn converge in probability to X?
Problem 3: Give an example where Xn converges in distribution to X, but not in
probability.
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