

Statistical Sciences

DoSS Summer Bootcamp Probability Module 7

! | |

Ichiro Hashimoto

University of Toronto

July 23, 2024

 $\mathcal{A} \oplus \mathcal{B}$ and $\mathcal{A} \oplus \mathcal{B}$ and $\mathcal{B} \oplus \mathcal{B}$ 290 4 D F July 23, 2024 1/20

Recap

Learnt in last module:

• Covariance

- \triangleright Covariance as an inner product
- \triangleright Correlation
- \triangleright Cauchy-Schwarz inequality
- \triangleright Uncorrelatedness and Independence
- *•* Concentration
	- \triangleright Markov's inequality
	- \triangleright Chebyshev's inequality
	- \triangleright Chernoff bounds

Outline

- *•* Stochastic convergence
	- \triangleright Convergence in distribution
	- \triangleright Convergence in probability
	- \triangleright Convergence almost surely
	- \triangleright Convergence in L^p
	- \triangleright Relationship between convergences

Recall: Convergence

Convergence of a sequence of numbers

A sequence a_1, a_2, \cdots converges to a limit a if

 $\lim_{n\to\infty} a_n = a.$

That is, for any $\epsilon > 0$, there exists an $N(\epsilon)$ such that

 $|a_n - a| < \epsilon$, $\forall n > N(\epsilon)$.

Recall: Convergence

 $AD \rightarrow AB \rightarrow AB \rightarrow AB$ 298 July 23, 2024 4 / 20

Observation: closeness of random variables

Sample mean of i.i.d. random variables Sample mean of i.i.d. random variables
For i.i.d. random variables X_i , $i = 1, \dots, n$ with $\mathbb{E}(X_i) = \mu$, $\text{Var}(X_i) = \sigma^2$, then for the sample mean $\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$ $\mathbb{E}(\bar{X}) = \mu$, $\text{Var}(\bar{X}) = \frac{\sigma^2}{n}$. **Proof:** July 23, 2024 6 / 20 {
in dependent and identically datributed. $\mathbb{E}(X) = \mu$, $\mathsf{Var}(X) = \frac{\pi}{n}$.
 $\boxed{\mathbb{E}(\bar{x}) = \frac{1}{\sqrt{\pi}} \sum_{i=1}^{m} x_i - \frac{1}{\sqrt{\pi}} \sum_{i=1}^{m} x_i}$ $\boxed{\mathbb{E}(\bar{x}) = \frac{1}{\sqrt{\pi}} \sum_{i=1}^{m} x_i - \frac{1}{\sqrt{\pi}} \sum_{i=1}^{m} x_i}$ linewity $\mathbb{E}(\overline{y}) = \mathbb{E}(\frac{1}{n}\sum_{c=1}^{n}Y_{c}) \oplus \frac{1}{n}\sum_{c=1}^{n} \mathbb{E}Y_{c}$
 $\text{[query] } (\overline{x}) = \mathbb{E}(\overline{x}-m)^{2} = \mathbb{E}(\frac{1}{n}\sum_{c=1}^{n}X_{c}-m)^{2}$ = $E\left(\begin{array}{cc} \frac{1}{n} & \frac{n}{\sqrt{2}} \\ n & \frac{1}{\sqrt{2}} \end{array} \begin{pmatrix} \chi_{i} - m \\ \chi_{i} \end{pmatrix} \right)_{i=1}^{2}$

$$
= \frac{1}{n^{2}} \mathbb{E} \left(\frac{\sum_{i=1}^{n} (y_{i} - \mu_{i})}{\sum_{i=1}^{n} (y_{i} - \mu_{i})} \right)^{2}
$$
\n
$$
= \frac{1}{n^{2}} \mathbb{E} \left[\sum_{i=1}^{n} (y_{i} - \mu_{i}) + \frac{1}{n^{2}} \mathbb{E} \sum_{i=1}^{n} (y_{i} - \mu_{i}) (y_{i} - \mu_{i}) \right]
$$
\n
$$
= \frac{1}{n^{2}} \mathbb{E} \left[\sum_{i=1}^{n} (y_{i} - \mu_{i}) + \frac{1}{n^{2}} \sum_{i=1}^{n} \mathbb{E} (y_{i} - \mu_{i}) (y_{i} - \mu_{i}) \right]
$$
\n
$$
= \frac{1}{n^{2}} \mathbb{E} \left[\sum_{i=1}^{n} (y_{i} - \mu_{i}) + \frac{1}{n^{2}} \sum_{i=1}^{n} \mathbb{E} (y_{i} - \mu_{i}) (y_{i} - \mu_{i}) \right]
$$
\n
$$
= \frac{n^{2}}{n} + \frac{1}{n^{2}} \sum_{i=1}^{n} \left[\mathbb{E} (y_{i} - \mu_{i}) \right] \left[\mathbb{E} (y_{i} - \mu_{i}) \right]
$$
\n
$$
= \mu
$$

 $=\frac{\sigma^2}{n}$

Example:

Further suppose X_i , $i = 1, \dots, n$ i.i.d. with distribution $\mathcal{N}(\mu, \sigma^2)$, then $\bar{X} \sim \mathcal{N}(\mu, \frac{\sigma^2}{n})$, so we can draw the probability density plot of \bar{X} . **chastic Convergence**
Example:
Further suppose X_i , $i = 1, \dots, n$ i.i.d. with distribution $\mathcal{N}(\mu, \sigma^2)$, then $\overline{X} \sim \mathcal{N}(\mu, \frac{\sigma^2}{n})$,
so we can draw the probability density plot of \overline{X} .

Example:

Further suppose X_i , $i = 1, \dots, n$ i.i.d. with distribution $\mathcal{N}(\mu, \sigma^2)$, then $\bar{X} \sim \mathcal{N}(\mu, \frac{\sigma^2}{n})$, so we can draw the probability density plot of \bar{X} .

Figure: Probability density curve of sample mean of normal distribution

 $\left\{ \bigoplus_k k \bigoplus_k k \bigoplus_k k \right\}$ つへへ July 23, 2024 7 / 20

Intuition:

- Series of numbers a_n \Rightarrow Series of random variables X_n ;
- Limit $a \Rightarrow$ Limit X:
- How to quantify the closeness? $(|X_n X|?)$

Intuition:

- Series of numbers a_n \Rightarrow Series of random variables X_n ;
- Limit $a \Rightarrow$ Limit X:
- How to quantify the closeness? $(|X_n X|?)$

Pointwise convergence / Sure convergence
Suppose random variables X_n and X are defin
we say X_n converges to X pointwise if ver the
 $\begin{array}{c} \n\sqrt{c} & P \\
\sqrt{c} & P \\
\hline\n\sqrt{c} & \sqrt{c}\n\end{array}$ Suppose random variables X_n and X are defined over the same probability space, then we say X_n converges to X pointwise if a point ↓ $\lim_{n\to\infty}X_n(\omega)=X(\omega),\ \forall\omega\in\Omega.$ G_{max} w is fixed $\forall q$ CW) is just ^a determinitic sequence .K ロ ▶ K 個 ▶ K 重 ▶ K 重 ▶ 「重 」 約 Q Q July 23, 2024 8 / 20

Intuition:

- Series of numbers a_n \Rightarrow Series of random variables X_n ;
- Limit $a \Rightarrow$ Limit X:
- How to quantify the closeness? $(|X_n X|?)$

Pointwise convergence / Sure convergence

Suppose random variables X_n and X are defined over the same probability space, then we say X_n converges to X pointwise if

$$
\lim_{n\to\infty}X_n(\omega)=X(\omega),\ \forall\omega\in\Omega.
$$

 $\mathbf{A} \oplus \mathbf{B} \rightarrow \mathbf{A} \oplus \mathbf{B} \rightarrow \mathbf{A} \oplus \mathbf{B} \rightarrow \mathbf{B} \oplus \mathbf{B} \$ July 23, 2024 8 / 20

 QQQ

Remark:

Incorporate probability measure in some sense.

Alternatives of describing the closeness:

- Utilize CDF: $F_{X_n}(x) F_X(x)$;
- Utilize probability of an event: $\mathbb{P}(|X_n X| > \epsilon)$;
- Utilize the probability over all ω : $\mathbb{P}(\lim_{n\to\infty}X_n(\omega)=X(\omega))$;
- Utilize mean/moments: $\mathbb{E}|X_n X|^p$.

$$
\begin{array}{ccccccccc}\n\mathcal{G}_{54} & & & & \mathcal{C}_{12} & & \mathcal{F} & & \mathcal{F}_{16} & & \mathcal{F}_{17} & & \mathcal{F}_{18} & & \mathcal{F}_{18} \\
\mathcal{G}_{54} & & & & & & \mathcal{C}_{12} & & \mathcal{F}_{13} & & \mathcal{F}_{18} & & \mathcal{F}_{19} & & \mathcal{F}_{19} & & \mathcal{F}_{10} \\
\mathcal{G}_{64} & & & & & & \mathcal{F}_{16} & & \mathcal{F}_{17} & & \mathcal{F}_{18} & & \mathcal{F}_{19} & & \mathcal{F}_{19} & & \mathcal{F}_{10} & & \mathcal{F}_{10} & & \mathcal{F}_{10} & & \mathcal{F}_{10} & & \mathcal{F}_{11} & & \mathcal{F}_{12} & & \mathcal{F}_{13} & & \mathcal{F}_{14} & & \mathcal{F}_{15} & & \mathcal{F}_{16} & & \mathcal{F}_{17} & & \mathcal{F}_{18} & & \mathcal{F}_{19} & & \mathcal{F}_{19} & & \mathcal{F}_{10} & & \mathcal{F}_{11} & & \mathcal{F}_{12} & & \mathcal{F}_{13} & & \mathcal{F}_{14} & & \mathcal{F}_{15} & & \mathcal{F}_{16} & & \mathcal{F}_{17} & & \mathcal{F}_{18} & & \mathcal{F}_{19} & & \mathcal{F}_{10} & & \mathcal{F}_{10
$$

July 23, 2024 10 / 20

 2040

Convergence in distribution

A sequence X_1, X_2, \cdots of real-valued random variables is said to converge in distribution, or converge weakly to a random variable X if oloseness of
K 1
converge Convergence
Convergence in distribution
A sequence X_1, X_2, \cdots of readistribution, or converge weak **Convergence**

Convergence in distribution

A sequence X_1, X_2, \cdots of real-valued random values

distribution, or converge weakly to a random values

for every number $x \in \mathbb{R}$ at which $F(\cdot)$ is continu

cumulative d $\bigcup_{\zeta \in \mathbb{R}} C^{12}$ f

ued random varia

b a random varia
 $\lim_{n \to \infty} F_n(x) = F(x)$
 $\overline{F(x)}$ is continuous

$$
\lim_{n\to\infty}F_n(x)=F(x),
$$

for every number $x \in \mathbb{R}$ at which $F(\cdot)$ is continuous. Here, $F_n(\cdot)$ and $F(\cdot)$ are the cumulative distribution functions of the random variables X_n and X, respectively.

Notation:

$$
X_n \xrightarrow{d} X, \quad X_n \xrightarrow{\mathcal{D}} X, \quad X_n \Rightarrow X.
$$

Convergence in distribution

A sequence X_1, X_2, \cdots of real-valued random variables is said to converge in distribution, or converge weakly to a random variable X if

$$
\lim_{n\to\infty}F_n(x)=F(x),
$$

for every number $x \in \mathbb{R}$ at which $F(\cdot)$ is continuous. Here, $F_n(\cdot)$ and $F(\cdot)$ are the cumulative distribution functions of the random variables X_n and X, respectively.

Notation:

$$
X_n \xrightarrow{d} X, \quad X_n \xrightarrow{\mathcal{D}} X, \quad X_n \Rightarrow X.
$$

Remark:

 X_n and X do not need to be defined on the same probability space. Because it's about closeness of

distributions

July 23, 2024 10 / 20

$$
\begin{array}{lll}\n\zeta_{,loc} & \mathbb{I} & \text{is continuous on } \mathbb{R} \\
& & \downarrow & \mathbb{I}(\kappa^{-\frac{1}{n}}) = \mathbb{I}(\kappa) = |P(\angle 25 \times)| \\
& & & \downarrow & \mathbb{I}(\kappa^{-\frac{1}{n}}) = \mathbb{I}(\kappa) = |P(\angle 25 \times)|.\n\end{array}
$$

2.)
$$
\int_{\mu}^{2} 2 \sim N(0,1) \approx 5
$$
 (ynmetric)
 $\left| \beta(-2 \le x) \right| = \left| \beta(2 \le x) \right|$

3.)
$$
\int m \mu \left(\frac{\mu}{2} x \right) = \ln \left(\frac{2}{2} x \right)
$$

Convergence in probability

A sequence X_n of random variables converges in probability towards the random variable X if for all $\epsilon > 0$,

$$
\lim_{n\to\infty}\mathbb{P}(|X_n-X|>\epsilon)=0.
$$

Notation: $X_n \stackrel{p}{\to} X$, $X_n \stackrel{p}{\to} X$.

Remark: X_n and X need to be defined on the same probability space.

Examples:

• Let $X_n = Z + \frac{1}{n}$, where $Z \sim \mathcal{N}(0, 1)$, then $X_n \stackrel{P}{\rightarrow} Z$. **Proof:** $\left[c + \frac{1}{2} \right]$ ($\left[\sqrt{c_1} - 2 \right]$ $\left[\sqrt{c_2} - 2 \right]$ $\left[\sqrt{c_1} - 2 \right]$ $\left[\sqrt{c_2} - 2 \right]$ $\left[\sqrt{c_1} - 2 \right]$ for a_1 $m > \epsilon^{-1}$ $7L_5$ $\lbrack f(r_{4}-2|2\epsilon) \rightarrow 0$ at $\lambda n \rightarrow 2$. • Let $X_n = Z + Y_n$, where $Z \sim \mathcal{N}(0, 1)$, $\mathbb{E}(|Y_n|) = \frac{1}{n}$, then $X_n \stackrel{P}{\rightarrow} Z$. **Proof:** $\mathbb{P} \left(|x_{n}-z| > \epsilon \right) = \mathbb{P} \left(|x_{n}| > \epsilon \right) \leq \epsilon^{-1} \mathbb{E} |x_{n}| = \frac{1}{n \epsilon}$

Stochastic convergence It looks like point wise convergent but slightly Convergence almost surely A sequence X_n of random variables converges almost surely or almost everywhere or with probability 1 or strongly towards X means that $\mathbb{P}\left(\lim_{n\to\infty}X_n=X\right)=\mathbb{P}\left(\omega\in\Omega:\lim_{n\to\infty}X_n(\omega)=X(\omega)\right)=1.$ Notation: $X_n \xrightarrow{a.s.} X$. $\chi_n \xrightarrow{c.c.} \chi_n$, $\chi_n \xrightarrow{a.c.} X$ Ge different allows $\begin{array}{lll} \text{(1)} & \text{(1)} & \text{(1)} \\ \text{(2)} & \text{(2)} & \text{(2)} \\ \text{(3)} & \text{(4)} & \text{(5)} & \text{(6)} \\ \text{(5)} & \text{(6)} & \text{(6)} & \text{(6)} \\ \text{(7)} & \text{(8)} & \text{(8)} & \text{(9)} \\ \text{(9)} & \text{(1)} & \text{(1)} & \text{(1)} \\ \text{(1)} & \text{(1)} & \text{(1)} & \text{(1)} \\ \text{(2)} & \text{(3)} & \text{(4)} & \text{(5)} & \text{(6)} \\ \text{(6)} & \$ **Solution Convergence**

Convergence almost surely

A sequence X_n of random variables

with probability 1 or strongly towar
 $\mathbb{P}\left(\lim_{n\to\infty}X_n=X\right)=\frac{1}{2}$

Notation: $X_n \xrightarrow{a.s.} X.$ $X_n \xrightarrow{b.s.} X$ the point vite convergent l_{2+}
allows $\frac{1}{n+100}$ $X_{4}(k_{0}) \neq X_{6}(k_{1})$
on a set with
almost surely or almost everyw
is that
 $\lim_{n \to \infty} X_{n}(\omega) = X(\omega) = 1$.

July 23, 2024 14 / 20

 $AB + AB + AB + AB$

Remark:

 X_n and X need to be defined on the same probability space.

Examples:

• Let $X_n = Z + \frac{1}{n}$, where $Z \sim \mathcal{N}(0, 1)$, then $X_n \xrightarrow{a.s.} Z$. **Proof: ergence**
 $\frac{1}{n}$, where $Z \sim \mathcal{N}(0, 1)$, therefore $\frac{1}{2}$ with $\frac{1}{2}$ and $\frac{1}{2}$ with $\frac{1}{2}$ and $\frac{1}{2}$ en $X_n \xrightarrow{a.s.} Z$.
 $\chi_{n(\omega)} = \frac{2(\omega)}{n} + \frac{1}{n} \frac{1}{n} = Z(\omega)$ $\{\uparrow \downarrow \downarrow \downarrow \text{and } \uparrow \downarrow \downarrow \text{and } \downarrow \downarrow \downarrow \text{and}$ - = $X(\omega)$ = $|$.

• Let $X_n = Z + Y_n$, where $Z \sim \mathcal{N}(0, 1)$, $\mathbb{E}(|Y_n|) = \frac{1}{n}$, do we have $X_n \xrightarrow{a.s.} Z$? **Proof:** $w = a |r w \rangle$ know x_0 $\frac{r}{2}$ $\frac{2}{3}$ No, Yn does not coverge to 2 a.s.

using th moment to captur closeness.

July 23, 2024 16 / 20

 QQQ

Convergence in L^p

A sequence $\{X_n\}$ of random variables converges in L_p to a random variable X, $p \ge 1$, if

$$
\lim_{n\to\infty}\mathbb{E}|X_n-X|^p=0
$$

Notation: $X_n \xrightarrow{L^p} X$.

Remark: X_n and X need to be defined on the same probability space.

Examples:

• Let
$$
X_n = Z + \frac{1}{n}
$$
, where $Z \sim \mathcal{N}(0, 1)$, then $X_n \xrightarrow{L^p} Z$.

implies:

\nLet
$$
X_n = Z + \frac{1}{n}
$$
, where $Z \sim \mathcal{N}(0, 1)$, then $X_n \xrightarrow{L^p} Z$.

\nProof:

\n
$$
\mathbb{E} \left[\left| \frac{y_n - 2}{n} \right|^p - \left| \frac{1}{n} \left(\frac{1}{n} \right)^p - \frac{1}{n^p} \right| \right] \quad \text{for all } n \geq 0.
$$

$$
\mathbb{E} |Y_n \geq 1 \quad \text{if } (n) \qquad n^p
$$
\n• Let $X_n = Z + Y_n$, where $Z \sim \mathcal{N}(0, 1)$, $\mathbb{E}(|Y_n|\ell) = \frac{1}{n}$, then $X_n \xrightarrow{L^p} Z$.
\n**Proof:**
\n
$$
\mathbb{E} |X_n - Z| \leq \mathbb{E} |X_n|^p = \frac{1}{n} \rightarrow 0
$$

Recall: A random variable $X \in L^p$ if $||X||_{L^p} = (E|X|^p)^{1/p} \times \infty$. $X_n \to X$ in L^p if $\lim_{n \to \infty} ||X_n - \widehat{X}||_{L^p} = 0$

Monotonicity of L^p Convergence

If $q > p > 0$, L^q convergence implies L^p convergence

Proof:
$$
\bigcup_{y \in p(n)0} \text{inequ}(1, y)
$$

\n
$$
(\biguplus_{i=1}^{n} |x|^{p})^{1/p} \leq (\biguplus_{i=1}^{n} |x|\xi)^{1/q} \text{ if } 0 < p < \xi.
$$
\n
$$
\bigg(\biguplus_{i=1}^{n} |x|_{1}^{p} \bigg) \leq \bigg(\biguplus_{i=1}^{n} |x|_{1}^{p} \bigg) \leq \bigg(\biguplus_{i=1}^{n} |x|_{1}^{p} \bigg) \leq \bigg(\biguplus_{i=1}^{n} |x_{i}-x|^{q}\bigg)^{1/q} \implies \bigg(\biguplus_{j=1}^{n} |x_{j}-x|^{q} \bigg) \leq \bigg(\biguplus_{j=1}^{n} |x_{j}-x|^{q} \bigg)^{1/q} \implies \bigg(\biguplus_{j=1}^{n} |x_{j}-x|^{q} \bigg) \leq \bigg(\biguplus_{j=1}^{n} |x_{j}-x|^{q}
$$

I nove

Recall: X_n converges to X in probability if for any $\epsilon > 0$ lim_{n→∞} $P(|X_n - X| > \epsilon) = 0$.

 L^p convergence implies Convergence in Probability

If $X_n \to X$ in L^p , then $X_n \to X$ in probability.

Proof: By Markov inequality $\bigcap (|x_{u} \times | > \epsilon) = \big| \big| \big(|x_{u} \times |^{p} > \epsilon^{p} \big)$ Mortow if for any $\epsilon > 0$ $\lim_{n \to \infty} F$

1 Probability

ility.
 $= \left[\begin{array}{ccc} \rho & (\sqrt{x_n} + \sqrt{p_n} & \sqrt{p_n} \\ \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \end{array} \right]$ $E\left[x, x\right]^p \longrightarrow O$ since $x_h \rightarrow x$ in $\frac{1}{2}$

Recall: X_n converges to X in probability if for any $\epsilon > 0$ lim_{n→∞} $P(|X_n - X| > \epsilon) = 0$.

a.s. Convergence implies Convergence in Probability

If $X_n \to X$ almost surely, then $X_n \to X$ in probability.

 $6m¹$

Proof:

Recall: X_n converges to X in distribution if for any continuity point x of $P(X \le x)$, $\lim_{n\to\infty} P(X_n \leq x) = P(X \leq x)$ holds.

Convergence in Probability implies Convergence in Distribution

If $X_n \to X$ in probability, then $X_n \to X$ in distribution.

Proof: Omitted

Relationship between convergences (on complete probability space):

Figure: relationship between convergences

 \leftarrow 290 July 23, 2024 $22/20$

Highlights:

• Almost sure convergence implies convergence in probability:

$$
X_n \xrightarrow{a.s.} X \Rightarrow X_n \xrightarrow{P} X;
$$

• Convergence in probability implies convergence in distribution:

$$
X_n \xrightarrow{P} X \Rightarrow X_n \xrightarrow{d} X;
$$

• If X_n converges in distribution to a constant c, then X_n converges in probability to c:

$$
X_n \xrightarrow{d} c \quad \Rightarrow \quad X_n \xrightarrow{P} c, \quad \text{provided } c \text{ is a constant.}
$$

 $AB + AB + AB + AB$ July 23, 2024 23 / 20

Problem Set

Problem 1: Prove that on a complete probability space, if $X_n \xrightarrow{L^p} X$, then $X_n \xrightarrow{P} X$. (Hint: use Markov's inequality)

Problem 2: Let X_1, \dots, X_n be i.i.d. random variables with *Bernoulli(p)* distribution, and $X \sim$ Bernoulli(p) is defined on the same probability space, independent with X_i 's. Does X_n converge in probability to X ?

Problem 3: Give an example where X_n converges in distribution to X, but not in probability.

