

Statistical Sciences

DoSS Summer Bootcamp Probability Module 8

Ichiro Hashimoto

University of Toronto

July 24, 2024

□ ▶ < @ ▶ < 볼 ▶ < 볼 ▶ 를 ∽ Q @ July 24, 2024 1/18

Recap

Learnt in last module:

- Stochastic convergence
 - \triangleright Convergence in distribution
 - Convergence in probability
 - Convergence almost surely
 - \triangleright Convergence in L^p
 - Relationship between convergences

Outline

• Convergence of functions of random variables

- Slutsky's theorem
- ▷ Continuous mapping theorem
- Laws of large numbers
 - ⊳ WLLN
 - ▷ SLLN
 - > Glivenko-Cantelli theorem
- Central limit theorem

Recall: Stochastic convergence If $X_n \to X$, $Y_n \to Y$ in some sense, how is the limiting property of $f(X_n, Y_n)$?

Recall: Stochastic convergence If $X_n \to X$, $Y_n \to Y$ in some sense, how is the limiting property of $f(X_n, Y_n)$?

Convergence of functions of random variables (a.s.)

Suppose the probability space is complete, if $X_n \xrightarrow{a.s.} X, Y_n \xrightarrow{a.s.} Y$, then for any real numbers a, b,

•
$$aX_n + bY_n \xrightarrow{a.s.} aX + bY;$$

• $X_n Y_n \xrightarrow{a.s.} XY_.$

Remark:

• Still require all the random variables to be defined on the same probability space

Convergence of functions of random variables (probability)

Suppose the probability space is complete, if $X_n \xrightarrow{P} X, Y_n \xrightarrow{P} Y$, then for any real numbers a, b,

•
$$aX_n + bY_n \xrightarrow{P} aX + bY;$$

•
$$X_n Y_n \xrightarrow{P} XY_.$$

Remark:

• Still require all the random variables to be defined on the same probability space

Convergence of functions of random variables (L^p)

Suppose the probability space is complete, if $X_n \xrightarrow{L^p} X, Y_n \xrightarrow{L^p} Y$, then for any real numbers a, b,

•
$$aX_n + bY_n \xrightarrow{L^p} aX + bY;$$

Remark:

• Still require all the random variables to be defined on the same probability space

Remark: Convergence in distribution is different.

Slutsky's theorem

If
$$X_n \stackrel{d}{\rightarrow} X$$
 and $Y_n \stackrel{P}{\rightarrow} c$ (*c* is a constant), then

•
$$X_n + Y_n \xrightarrow{d} X + c;$$

•
$$X_n Y_n \xrightarrow{d} cX;$$

•
$$X_n/Y_n \xrightarrow{d} X/c$$
, where $c \neq 0$.

Remark: Convergence in distribution is different.

Slutsky's theorem

If
$$X_n \stackrel{d}{\rightarrow} X$$
 and $Y_n \stackrel{P}{\rightarrow} c$ (*c* is a constant), then

•
$$X_n + Y_n \xrightarrow{d} X + c;$$

•
$$X_n Y_n \xrightarrow{d} cX;$$

•
$$X_n/Y_n \xrightarrow{d} X/c$$
, where $c \neq 0$.

Remark:

• The theorem remains valid if we replace all the convergence in distribution with convergence in probability.

Remark: The requirement that $Y_n \xrightarrow{P} c$ (*c* is a constant) is necessary.

Remark: The requirement that $Y_n \xrightarrow{P} c$ (*c* is a constant) is necessary.

Examples:

 $X_n \sim \mathcal{N}(0,1), \, Y_n = -X_n$, then

•
$$X_n \stackrel{d}{\rightarrow} Z \sim \mathcal{N}(0,1), \ Y_n \stackrel{d}{\rightarrow} Z \sim \mathcal{N}(0,1);$$

• $X_n + Y_n \xrightarrow{d} 0;$

•
$$X_n Y_n = -X_n^2 \xrightarrow{d} -\chi^2(1);$$

• $X_n/Y_n = -1$.

Continuous mapping theorem

Let X_n , X be random variables, if $g(\cdot) : \mathbb{R} \to \mathbb{R}$ satisfies $\mathbb{P}(X \in D_g) = 0$, then

•
$$X_n \xrightarrow{a.s.} X \Rightarrow g(X_n) \xrightarrow{a.s.} g(X)$$
;
• $X_n \xrightarrow{P} X \Rightarrow g(X_n) \xrightarrow{P} g(X)$;

•
$$X_n \stackrel{d}{\rightarrow} X \quad \Rightarrow \quad g(X_n) \stackrel{d}{\rightarrow} g(X) ;$$

where D_g is the set of discontinuity points of $g(\cdot)$.

Continuous mapping theorem

Let X_n , X be random variables, if $g(\cdot):\mathbb{R}\to\mathbb{R}$ satisfies $\mathbb{P}(X\in D_g)=0$, then

•
$$X_n \xrightarrow{a.s.} X \Rightarrow g(X_n) \xrightarrow{a.s.} g(X);$$

•
$$X_n \xrightarrow{P} X \Rightarrow g(X_n) \xrightarrow{P} g(X)$$
;

•
$$X_n \stackrel{d}{\rightarrow} X \quad \Rightarrow \quad g(X_n) \stackrel{d}{\rightarrow} g(X)$$
;

where D_g is the set of discontinuity points of $g(\cdot)$.

Remark:

- If $g(\cdot)$ is continuous, then ...
- If X is a continuous random variable, and D_g only include countably many points, then ...

Weak Law of Large Numbers (WLLN)

If X_1, X_2, \cdots, X_n are i.i.d. random variables, $\mu = \mathbb{E}(|X_i|) < \infty$, then

$$\bar{X} = rac{\sum_{i=1}^{n} X_i}{n} \quad \stackrel{P}{\to} \quad \mu.$$

Remark:

A more easy-to-prove version is the L^2 weak law, where an additional assumption $Var(X_i) < \infty$ is required.

Sketch of the proof:

A generalization of the theorem: triangular array

Triangular array

A triangular array of random variables is a collection $\{X_{n,k}\}_{1 \le k \le n}$.

 $X_{1,1} \\ X_{2,1}, X_{2,2} \\ X_{3,1}, X_{3,2}, X_{3,3} \\ \vdots \\ X_{n,1}, X_{n,2}, \cdots, X_{n,n}$

Remark: We can consider the limiting property of the row sum S_n .

Law of Large Numbers

L^2 weak law for triangular array

Suppose $\{X_{n,k}\}$ is a triangular array, $n = 1, 2, \dots, k = 1, 2, \dots, n$. Let $S_n = \sum_{k=1}^n X_{n,k}, \mu_n = \mathbb{E}(S_n)$, if $\sigma_n^2/b_n^2 \to 0$, where $\sigma_n^2 = Var(S_n)$ and b_n is a sequence of positive real numbers, then

$$\frac{S_n-\mu_n}{b_n} \quad \xrightarrow{P} \quad 0.$$

Remark:

The L^2 weak law for i.i.d. random variables is a special case of that for triangular array.

Proof:

< □ ▶ < 圕 ▶ < ≧ ▶ < ≧ ▶ ≧ 少 Q (~ July 24, 2024 13 / 18

Proof:

Remark:

A more generalized version incorporates truncation, then the second-moment constraint is relieved.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Strong Law of Large Numbers (SLLN)

Let X_1, X_2, \cdots be an i.i.d. sequence satisfying $\mathbb{E}(X_i) = \mu$ and $\mathbb{E}(|X_i|) < \infty$, then $\bar{X} = \frac{\sum_{i=1}^n X_i}{n} \xrightarrow{a.s.} \mu$.

Remark: The proof needs Borel-Cantelli lemma.

□ ▶ < 클 ▶ < 클 ▶ < 클 ▶ 를 ∽ 였 July 24, 2024 14 / 18

Strong Law of Large Numbers (SLLN)

Let
$$X_1, X_2, \cdots$$
 be an i.i.d. sequence satisfying $\mathbb{E}(X_i) = \mu$ and $\mathbb{E}(|X_i|) < \infty$, then $\bar{X} = \frac{\sum_{i=1}^n X_i}{n} \xrightarrow{a.s.} \mu$.

Remark: The proof needs Borel-Cantelli lemma.

Glivenko-Cantelli theorem

Let X_i , $i = 1, \dots, n$ i.i.d. with distribution function $F(\cdot)$, and let $F_n(x) = \frac{1}{n} \sum_{i=1}^n I(X_i \le x)$, then as $n \to \infty$, $\sup_{x \in \mathbb{R}} |F(x) - F_n(x)| \to 0, \quad a.s.$

Proof:

< □ ▶ < □ ▶ < ■ ▶ < ■ ▶ < ■ ▶ = つへで July 24, 2024 15/18

Limit Theorems and Counterexamples

Recall: For the law of large numbers to hold, the assumption $E|X| < \infty$ is crucial.

Law of Large Numbers fail for infinite mean i.i.d. random variables

If $X_1X_2,...$ are i.i.d. to X with $E|X_i| = \infty$, then for $S_n = X_1 + \cdots + X_n$, $P(\lim_{n\to\infty} S_n/n \in (-\infty,\infty)) = 0$.

Proof: Omitted

Central Limit Theorem

What is the limiting distribution of the sample mean?

Classic CLT

Suppose X_1, \dots, X_n is a sequence of i.i.d. random variables with $\mathbb{E}(X_i) = \mu$, $Var(X_i) = \sigma^2 < \infty$, then

$$\frac{\sqrt{n}(\bar{X}_n-\mu)}{\sigma} \quad \stackrel{d}{\to} \quad \mathcal{N}(0,1).$$

Remark:

- The proof involves characteristic function.
- A more generalized CLT is referred to as "Lindeberg CLT".

Central Limit Theorem

Example:

Suppose $X_i \sim Bernoulli(p)$, i.i.d., consider $Z_n = \frac{\sum_{i=1}^n X_i - np}{\sqrt{np(1-p)}}$, then by CLT, $Z_n \sim \mathcal{N}(0, 1)$ asymptotically.

Monotone Convergence Theorem

Monotone Convergence Theorem

If $X_n \ge c$ and $X_n \nearrow X$, then $EX_n \nearrow EX$

Usage:

Dominate Convergence Theorem

Dominated Convergence Theorem

If $X_n \to X$ a.s. and $|X_n| \leq Y$ a.s. for all *n* and *Y* is integrable, then $EX_n \to EX$

Usage:

Delta Method

More about CLT: Delta method

Suppose X_n are i.i.d. random variables with $EX_n = 0$, $VAR(X_n) = \sigma^2 > 0$. Let g be a measurable function that is differentiable at 0 with $g'(0) \neq 0$. Then

$$\sqrt{n}\left(g\left(rac{\sum_{k=1}^{n}X_{k}}{n}-g(0)
ight)
ight)
ightarrow {\sf N}(0,\sigma^{2}g'(0)^{2})$$
 weakly.

Proof under stronger assumption: Here, we suppose g is continuously differentiable on \mathbb{R} . If you are interested in a general proof refer to Robert Keener's *Theoretical Statistics*.

Problem Set

Problem 1: Prove that on a complete probability space, if $X_n \xrightarrow{a.s.} X, Y_n \xrightarrow{a.s.} Y$, then $X_n + Y_n \xrightarrow{a.s.} X + Y$.

Problem 2: Prove that on a complete probability space, if $X_n \xrightarrow{P} X, Y_n \xrightarrow{P} Y$, then $X_n + Y_n \xrightarrow{P} X + Y$.

Problem 3: A bank teller serves customers standing in the queue one by one. Suppose that the service time X_i for customer *i* has mean $\mathbb{E}(X_i) = 2$ (minutes) and $Var(X_i) = 1$. We assume that service times for different bank customers are independent. Let *Y* be the total time the bank teller spends serving 50 customers. Find $\mathbb{P}(90 < Y < 110)$.

