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Recap

Learnt in last module:

• Stochastic convergence
◃ Convergence in distribution
◃ Convergence in probability
◃ Convergence almost surely
◃ Convergence in Lp

◃ Relationship between convergences
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Outline

• Convergence of functions of random variables
◃ Slutsky’s theorem
◃ Continuous mapping theorem

• Laws of large numbers
◃ WLLN
◃ SLLN
◃ Glivenko-Cantelli theorem

• Central limit theorem
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Convergence of functions of random variables

Recall: Stochastic convergence If Xn → X, Yn → Y in some sense, how is the
limiting property of f(Xn,Yn)?

Convergence of functions of random variables (a.s.)
Suppose the probability space is complete, if Xn

a.s.−−→ X,Yn
a.s.−−→ Y, then for any real

numbers a, b,
• aXn + bYn

a.s.−−→ aX + bY;
• XnYn

a.s.−−→ XY.

Remark:
• Still require all the random variables to be defined on the same probability space

July 24, 2024 4 / 18

e- g .
Xn + Yn + Y

Xy : Yu + ?

Xu/Yn + ?

En = X ,
+..

- + Xy

En+?



Convergence of functions of random variables

Recall: Stochastic convergence If Xn → X, Yn → Y in some sense, how is the
limiting property of f(Xn,Yn)?

Convergence of functions of random variables (a.s.)
Suppose the probability space is complete, if Xn

a.s.−−→ X,Yn
a.s.−−→ Y, then for any real

numbers a, b,
• aXn + bYn

a.s.−−→ aX + bY;
• XnYn

a.s.−−→ XY.

Remark:
• Still require all the random variables to be defined on the same probability space

July 24, 2024 4 / 18



Convergence of functions of random variables

Convergence of functions of random variables (probability)
Suppose the probability space is complete, if Xn

P−→ X,Yn
P−→ Y, then for any real

numbers a, b,
• aXn + bYn

P−→ aX + bY;
• XnYn

P−→ XY.

Remark:
• Still require all the random variables to be defined on the same probability space
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Convergence of functions of random variables

Convergence of functions of random variables (Lp)
Suppose the probability space is complete, if Xn

Lp
−→ X,Yn

Lp
−→ Y, then for any real

numbers a, b,
• aXn + bYn

Lp
−→ aX + bY;

Remark:
• Still require all the random variables to be defined on the same probability space
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Convergence of functions of random variables

Remark: Convergence in distribution is different.

Slutsky’s theorem
If Xn

d−→ X and Yn
P−→ c (c is a constant), then

• Xn + Yn
d−→ X + c;

• XnYn
d−→ cX;

• Xn/Yn
d−→ X/c, where c ̸= 0.

Remark:
• The theorem remains valid if we replace all the convergence in distribution with

convergence in probability.
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Convergence of functions of random variables

Remark: The requirement that Yn
P−→ c (c is a constant) is necessary.

Examples:
Xn ∼ N (0, 1),Yn = −Xn, then

• Xn
d−→ Z ∼ N (0, 1), Yn

d−→ Z ∼ N (0, 1);
• Xn + Yn

d−→ 0;
• XnYn = −X2

n
d−→ −χ2(1);

• Xn/Yn = −1.
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Convergence of functions of random variables

Continuous mapping theorem
Let Xn, X be random variables, if g(·) : R → R satisfies P(X ∈ Dg) = 0, then

• Xn
a.s.−−→ X ⇒ g(Xn)

a.s.−−→ g(X) ;
• Xn

P−→ X ⇒ g(Xn)
P−→ g(X) ;

• Xn
d−→ X ⇒ g(Xn)

d−→ g(X) ;
where Dg is the set of discontinuity points of g(·).

Remark:
• If g(·) is continuous, then ...
• If X is a continuous random variable, and Dg only include countably many points,

then ...

July 24, 2024 9 / 18

-

& is essentially continuous

w . ri
t

. X

-



Convergence of functions of random variables

Continuous mapping theorem
Let Xn, X be random variables, if g(·) : R → R satisfies P(X ∈ Dg) = 0, then

• Xn
a.s.−−→ X ⇒ g(Xn)

a.s.−−→ g(X) ;
• Xn

P−→ X ⇒ g(Xn)
P−→ g(X) ;

• Xn
d−→ X ⇒ g(Xn)

d−→ g(X) ;
where Dg is the set of discontinuity points of g(·).

Remark:
• If g(·) is continuous, then ...
• If X is a continuous random variable, and Dg only include countably many points,

then ...

July 24, 2024 9 / 18



Law of large numbers
Weak Law of Large Numbers (WLLN)
If X1,X2, · · · ,Xn are i.i.d. random variables, µ = E(|Xi|) < ∞, then

X̄ =

∑n
i=1 Xi
n

P−→ µ.

Remark:
A more easy-to-prove version is the L2 weak law, where an additional assumption
Var(Xi) < ∞ is required.
Sketch of the proof:
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Law of large numbers

A generalization of the theorem: triangular array

Triangular array
A triangular array of random variables is a collection {Xn,k}1≤k≤n.

X1,1
X2,1,X2,2
X3,1,X3,2,X3,3

...
Xn,1,Xn,2, · · · ,Xn,n

Remark: We can consider the limiting property of the row sum Sn.
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Law of Large Numbers
L2 weak law for triangular array
Suppose {Xn,k} is a triangular array, n = 1, 2, · · · , k = 1, 2, · · · , n. Let
Sn =

∑n
k=1 Xn,k, µn = E(Sn), if σ2

n/b2
n → 0, where σ2

n = Var(Sn) and bn is a sequence
of positive real numbers, then

Sn − µn
bn

P−→ 0.

Remark:
The L2 weak law for i.i.d. random variables is a special case of that for triangular
array.
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Law of large numbers

Proof:

Remark:
A more generalized version incorporates truncation, then the second-moment
constraint is relieved.
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Law of large numbers

Strong Law of Large Numbers (SLLN)
Let X1,X2, · · · be an i.i.d. sequence satisfying E(Xi) = µ and E(|Xi|) < ∞, then
X̄ =

∑n
i=1 Xi
n

a.s.−−→ µ.

Remark: The proof needs Borel-Cantelli lemma.

Glivenko-Cantelli theorem
Let Xi, i = 1, · · · , n i.i.d. with distribution function F(·), and let
Fn(x) = 1

n
∑n

i=1 I(Xi ≤ x), then as n → ∞,

sup
x∈R

|F(x)− Fn(x)| → 0, a.s.

July 24, 2024 14 / 18

&



Law of large numbers

Strong Law of Large Numbers (SLLN)
Let X1,X2, · · · be an i.i.d. sequence satisfying E(Xi) = µ and E(|Xi|) < ∞, then
X̄ =

∑n
i=1 Xi
n

a.s.−−→ µ.

Remark: The proof needs Borel-Cantelli lemma.

Glivenko-Cantelli theorem
Let Xi, i = 1, · · · , n i.i.d. with distribution function F(·), and let
Fn(x) = 1

n
∑n

i=1 I(Xi ≤ x), then as n → ∞,

sup
x∈R

|F(x)− Fn(x)| → 0, a.s.

July 24, 2024 14 / 18

men
F(X) is random & &

↑it's hard to prove with suprema .



Law of large numbers
Proof:
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Limit Theorems and Counterexamples
Recall: For the law of large numbers to hold, the assumption E|X| < ∞ is crucial.

Law of Large Numbers fail for infinite mean i.i.d. random variables
If X1X2, . . . are i.i.d. to X with E|Xi| = ∞, then for Sn = X1 + · · ·+ Xn,
P(limn→∞ Sn/n ∈ (−∞,∞)) = 0.

Proof: Omitted
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Central Limit Theorem

What is the limiting distribution of the sample mean?

Classic CLT
Suppose X1, · · ·Xn is a sequence of i.i.d. random variables with E(Xi) = µ,
Var(Xi) = σ2 < ∞, then

√n(X̄n − µ)

σ
d−→ N (0, 1).

Remark:
• The proof involves characteristic function.
• A more generalized CLT is referred to as “Lindeberg CLT”.
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Central Limit Theorem

Example:
Suppose Xi ∼ Bernoulli(p), i.i.d., consider Zn =

∑n
i=1 Xi−np√
np(1−p)

, then by CLT, Zn ∼ N (0, 1)
asymptotically.
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Monotone Convergence Theorem

Monotone Convergence Theorem
If Xn ≥ c and Xn ↗ X, then EXn ↗ EX

Usage:
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Dominate Convergence Theorem

Dominated Convergence Theorem
If Xn → X a.s. and |Xn| ≤ Y a.s. for all n and Y is integrable, then EXn → EX

Usage:
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Delta Method
More about CLT: Delta method
Suppose Xn are i.i.d. random variables with EXn = 0,VAR(Xn) = σ2 > 0. Let g be a
measurable function that is differentiable at 0 with g′(0) ̸= 0. Then

√
n
(

g
(∑n

k=1 Xk
n − g(0)

))
→ N(0,σ2g′(0)2) weakly.

Proof under stronger assumption: Here, we suppose g is continuously
differentiable on R. If you are interested in a general proof refer to Robert Keener’s
Theoretical Statistics.
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Problem Set

Problem 1: Prove that on a complete probability space, if Xn
a.s.−−→ X,Yn

a.s.−−→ Y, then
Xn + Yn

a.s.−−→ X + Y.

Problem 2: Prove that on a complete probability space, if Xn
P−→ X,Yn

P−→ Y, then
Xn + Yn

P−→ X + Y.
Problem 3: A bank teller serves customers standing in the queue one by one. Suppose
that the service time Xi for customer i has mean E(Xi) = 2 (minutes) and Var(Xi) = 1.
We assume that service times for different bank customers are independent. Let Y be
the total time the bank teller spends serving 50 customers. Find P(90 < Y < 110).
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