

Statistical Sciences

DoSS Summer Bootcamp Probability Module 8

Ichiro Hashimoto

University of Toronto

July 24, 2024

□ ▶ ◀ 🗇 ▶ ◀ Ē ▶ ◀ Ē ▶ Ē ∽ (~ July 24, 2024 1/18

Recap

Learnt in last module:

- Stochastic convergence
 - \triangleright Convergence in distribution
 - Convergence in probability
 - Convergence almost surely
 - \triangleright Convergence in L^p
 - Relationship between convergences

Outline

• Convergence of functions of random variables

- Slutsky's theorem
- ▷ Continuous mapping theorem
- Laws of large numbers
 - ⊳ WLLN
 - ▷ SLLN
 - > Glivenko-Cantelli theorem
- Central limit theorem

Recall: Stochastic convergence If $X_n \to X$, $Y_n \to Y$ in some sense, how is the limiting property of $f(X_n, Y_n)$?

 e_{-2} , χ_{n} tim \rightarrow ? Xy. Yy ->? Xu/Xu -) ? Sha Xit - + Xn $S_{L} \rightarrow ?$

Recall: Stochastic convergence If $X_n \to X$, $Y_n \to Y$ in some sense, how is the limiting property of $f(X_n, Y_n)$?

Convergence of functions of random variables (a.s.)

Suppose the probability space is complete, if $X_n \xrightarrow{a.s.} X, Y_n \xrightarrow{a.s.} Y$, then for any real numbers a, b,

•
$$aX_n + bY_n \xrightarrow{a.s.} aX + bY;$$

• $X_n Y_n \xrightarrow{a.s.} XY_.$

Remark:

• Still require all the random variables to be defined on the same probability space

Convergence of functions of random variables (probability)

Suppose the probability space is complete, if $X_n \xrightarrow{P} X, Y_n \xrightarrow{P} Y$, then for any real numbers a, b,

•
$$aX_n + bY_n \xrightarrow{P} aX + bY;$$

•
$$X_n Y_n \xrightarrow{P} XY_.$$

Remark:

• Still require all the random variables to be defined on the same probability space

By trengle inequality

$$|(x_{i}, t_{i}) - (x + t_{i})| \leq |(x_{i} - x| + |t_{i} - t_{i}|)|$$
So, $\{ |(x_{i} + t_{i}) - |(x + t_{i})| > \epsilon \} \subset \{ |(x_{i} - x| > \epsilon \} \cup \{ |t_{i} - t_{i}| > \epsilon \} \}$
Union bound argument
Hence: $|P(|(x_{i}, t_{i}) - (x + t_{i})| > \epsilon) \leq P(|(x_{i} - x| > \epsilon) + |P(||t_{i} - t_{i}| > \epsilon) + |P(||t_{i} - t_{i} - t_{i}$

$$\lim_{x \to 0} \left| \mp \left[x_{u} - x \right]^{n} = 0 \right]$$

Convergence of functions of random variables (L^p)

Suppose the probability space is complete, if $X_n \xrightarrow{L^p} X, Y_n \xrightarrow{L^p} Y$, then for any real numbers a, b,

•
$$aX_n + bY_n \xrightarrow{L^p} aX + bY;$$

Remark:

• Still require all the random variables to be defined on the same probability space

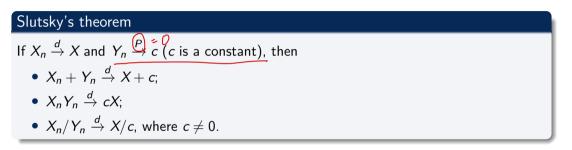
$$\begin{array}{c} X_{n} + \overline{f_{n}} \rightarrow X + \overline{f} \\ (p f) \\ \hline Fact If P Z I, then Lp speen hus triaghe inequality \\ i.e. \\ & \| X + \overline{f} \|_{L^{p}} \leq \| X + \| y + \| y + \| y \|_{L^{p}}, \\ & \| X \|_{L^{p}} = \left(\left| F + \| X \|^{p} \right)^{\frac{p}{p}} \right. \\ & By trianghe inequality \end{array}$$

$$||(X_n+X_n) - (X+T)||_{t^{p}} \leq ||X_n - X||_{t^{p}} + ||T_n - Y||_{t^{p}} \rightarrow 0^{-1}$$

$$-) \cup \qquad \rightarrow \delta$$

$$Sim \qquad X_n \stackrel{t^{p}}{\rightarrow} X, \quad Y_n \stackrel{t^{p}}{\rightarrow} T$$

Remark: Convergence in distribution is different.



Remark: Convergence in distribution is different.

Slutsky's theorem

If
$$X_n \stackrel{d}{\rightarrow} X$$
 and $Y_n \stackrel{P}{\rightarrow} c$ (*c* is a constant), then

•
$$X_n + Y_n \xrightarrow{d} X + c;$$

•
$$X_n Y_n \xrightarrow{d} cX;$$

•
$$X_n/Y_n \xrightarrow{d} X/c$$
, where $c \neq 0$.

Remark:

• The theorem remains valid if we replace all the convergence in distribution with convergence in probability.

Remark: The requirement that $Y_n \xrightarrow{P} c$ (*c* is a constant) is necessary.

Remark: The requirement that $Y_n \xrightarrow{P} c$ (*c* is a constant) is necessary. **Examples:** $X_n \sim \mathcal{N}(0, 1), Y_n = -X_n$, then • $X_n \xrightarrow{d} Z \sim \mathcal{N}(0, 1), Y_n \xrightarrow{d} Z \sim \mathcal{N}(0, 1);$ • $X_n + Y_n \xrightarrow{d} 0; \neq 2$ • $X_n Y_n = -X_n^2 \xrightarrow{d} -\chi^2(1); \neq 2^2$ • $X_n/Y_n = -1. \neq \frac{2}{2}$

Continuous mapping theorem

Let X_n , X be random variables, if $g(\cdot) : \mathbb{R} \to \mathbb{R}$ satisfies $\mathbb{P}(X \in D_g) = 0$, then • $X_n \xrightarrow{a.s.} X \Rightarrow g(X_n) \xrightarrow{a.s.} g(X)$; • $X_n \xrightarrow{P} X \Rightarrow g(X_n) \xrightarrow{P} g(X)$; • $X_n \xrightarrow{d} X \Rightarrow g(X_n) \xrightarrow{d} g(X)$; where D_g is the set of discontinuity points of $g(\cdot)$.

Continuous mapping theorem

Let X_n , X be random variables, if $g(\cdot):\mathbb{R}\to\mathbb{R}$ satisfies $\mathbb{P}(X\in D_g)=0$, then

•
$$X_n \xrightarrow{a.s.} X \Rightarrow g(X_n) \xrightarrow{a.s.} g(X);$$

•
$$X_n \xrightarrow{P} X \Rightarrow g(X_n) \xrightarrow{P} g(X)$$
;

•
$$X_n \stackrel{d}{\rightarrow} X \quad \Rightarrow \quad g(X_n) \stackrel{d}{\rightarrow} g(X) ;$$

where D_g is the set of discontinuity points of $g(\cdot)$.

Remark:

- If $g(\cdot)$ is continuous, then ...
- If X is a continuous random variable, and D_g only include countably many points, then ...

Weak Law of Large Numbers (WLLN)

If X_1, X_2, \dots, X_n are i.i.d. random variables, $\mu = \mathbb{E}(X_i)$ (X_i) then $\bar{X} = \frac{\sum_{i=1}^n X_i}{n}$ (P) μ .

Remark:

A more easy-to-prove version is the L^2 weak law, where an additional assumption $Var(X_i) < \infty$ is required.

10/18

July 24, 2024

Sketch of the proof:

 $\mathbb{E}\left(\overline{X} - \mu\right)^{2} = \sqrt{\operatorname{ar}\left(\overline{X}\right)}$ $= \sqrt{\operatorname{ar}\left(\frac{\Sigma \times c}{m}\right)}$

$$= \frac{1}{m^2} \sum_{i=1}^{n} V_{cw}(X_c) \quad \text{smor } X_i \text{'s are}$$

$$= \frac{m V_{ov}(X_1)}{m^2} = \frac{V_{ov}(X_1)}{m} \rightarrow 0$$

as m- to

thanfore $\overline{X} \rightarrow \mathcal{M} := L^2$

A generalization of the theorem: triangular array

Triangular array

A triangular array of random variables is a collection $\{X_{n,k}\}_{1 \le k \le n}$.

$$\begin{array}{c} n = (\) X_{1,1} & \underbrace{\sum X_{2,1}}_{n} & \sum \\ n = 2 & \longrightarrow \\ x_{2,1}, & X_{2,2} & \underbrace{\sum X_{2}}_{n} & \underbrace{\sum }_{n} \\ n = 2 & \longrightarrow \\ x_{3,1}, & X_{3,2}, & X_{3,3} & \underbrace{\sum \\ x_{n,2}, & X_{n,3}, & \underbrace{\sum }_{n} \\ \vdots \\ n & \longrightarrow \\ x_{n,1}, & X_{n,2}, & \cdots , & X_{n,n} & \underbrace{\sum }_{n} \\ \end{array}$$

Remark: We can consider the limiting property of the row sum S_n .

□ ► < □ ► < ⊇ ► < ⊇ ► < ⊇ ► < ⊇ ► < ⊇ < ○ Q (?) July 24, 2024 11/18

Law of Large Numbers

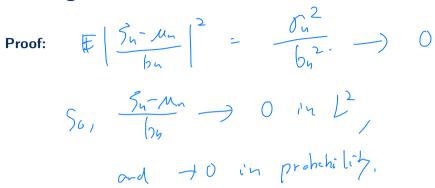
L^2 weak law for triangular array

Suppose $\{X_{n,k}\}$ is a triangular array, $n = 1, 2, \dots, k = 1, 2, \dots, n$. Let $S_n = \sum_{k=1}^n X_{n,k}$, $\mu_n = \mathbb{E}(S_n)$, if $\sigma_n^2/b_n^2 \to 0$, where $\sigma_n^2 = Var(S_n)$ and b_n is a sequence of positive real numbers, then

$$\frac{S_n-\mu_n}{b_n} \quad \xrightarrow{P} \quad 0.$$

Remark:

The L^2 weak law for i.i.d. random variables is a special case of that for triangular array.



July 24, 2024 13/18

Proof:

Remark:

A more generalized version incorporates truncation, then the second-moment constraint is relieved.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Strong Law of Large Numbers (SLLN)

Let X_1, X_2, \cdots be an i.i.d. sequence satisfying $\mathbb{E}(X_i) = \mu$ and $\mathbb{E}(|X_i|) < \infty$, then $\bar{X} = \frac{\sum_{i=1}^n X_i}{n}$ μ .

Remark: The proof needs Borel-Cantelli lemma.

Strong Law of Large Numbers (SLLN)

Let
$$X_1, X_2, \cdots$$
 be an i.i.d. sequence satisfying $\mathbb{E}(X_i) = \mu$ and $\mathbb{E}(|X_i|) < \infty$, then $\bar{X} = \frac{\sum_{i=1}^n X_i}{n} \xrightarrow{a.s.} \mu$.

Remark: The proof needs Borel-Cantelli lemma.

Glivenko-Cantelli theorem

Let
$$X_i, i = 1, \dots, n$$
 i.i.d. with distribution function $F(\cdot)$, and let
 $F_n(x) = \frac{1}{n} \sum_{i=1}^n I(X_i \le x)$, then as $n \to \infty$,
 $F_n(x)$ is random $\sup_{x \in \mathbb{R}} |F(x) - F_n(x)| \to 0$, (a.s.)
TORONTO \uparrow it's how to prove with suprements $f(x) = 1 = 0$ and $f(x) = 1 = 0$.
July 24, 2024 14/18

Weaker version. Proof: For my XEIP, [F(a) - Fu(a) [-) 0 a.S. $0 \leq I(X_{c} \leq x) \leq 1$ Note that $0 \leq \mathbb{E} \mathbb{I}(X_{c} \leq x) = \mathbb{P}(X_{c} \leq x) = \mathbb{F}(x) \leq 1$ S., finite B_7 SLUN, $F_n(\pi) \rightarrow F(\pi) \quad a.s.$

Limit Theorems and Counterexamples

Recall: For the law of large numbers to hold, the assumption $E|X| < \infty$ is crucial.

Law of Large Numbers fail for infinite mean i.i.d. random variables

If $X_1X_2,...$ are i.i.d. to X with $E|X_i| = \infty$, then for $S_n = X_1 + \cdots + X_n$, $P(\lim_{n\to\infty} S_n/n \in (-\infty,\infty)) = 0$.

Proof: Omitted

Central Limit Theorem

What is the limiting distribution of the sample mean?

Classic CLT Suppose $X_1, \dots X_n$ is a sequence of i.i.d. random variables with $\mathbb{E}(X_i) = \mu$, $Var(X_i) = \sigma^2 < \infty$, then $\frac{\sqrt{n}(\bar{X}_n - \mu)}{\sigma} \quad \textcircled{d} \quad \mathcal{N}(0, 1).$

Remark:

- The proof involves characteristic function.
- A more generalized CLT is referred to as "Lindeberg CLT".

Central Limit Theorem

Example:

Suppose $X_i \sim Bernoulli(p)$, i.i.d., consider $Z_n = \frac{\sum_{i=1}^n X_i - np}{\sqrt{np(1-p)}}$, then by CLT, $Z_n \sim \mathcal{N}(0, 1)$ asymptotically.

Monotone Convergence Theorem

Monotone Convergence Theorem

If $X_n \ge c$ and $X_n \nearrow X$, then $EX_n \nearrow EX$

Usage:
Lt Xn hr
$$P(X = \frac{1}{n^2}) = P = [-P(X = 0)]$$

Note $0 \leq Xn \leq \frac{1}{n^2}$ and $\neq Xn = \frac{1}{n^2}$
Lt $S_n = \sum_{i=1}^{n} X_i$. Then $S_n \geq 0$ and is monotonically increasing.
Furthermore, $S_n \leq \sum_{i=1}^{n} \frac{1}{i^2} \leq \frac{\pi^2}{6}$ and
 $F_{inthermore}$, $S_n \leq \sum_{i=1}^{n} \frac{1}{i^2} \leq \frac{\pi^2}{6}$ and
 $\int S_i S_i random$
July 24, 2024 19/18

Q. $FS_{h} \rightarrow FS$? A. Yes by monotone convergen theorem. Therefor $FS = \lim_{m \to \infty} FS_{n}$ $= \lim_{m \to \infty} \sum_{c=1}^{n} \frac{p}{c^{2}} = p \cdot \frac{\pi^{2}}{6}$

> we ased $\sum_{m=1}^{\infty} \frac{1}{m^2} = \frac{\pi^2}{6}$

Dominate Convergence Theorem
ETT(
$$X^{m}$$
)
Dominated Convergence Theorem
If $X_{n} \to X$ a.s. and $|X_{n}| \leq Y$ a.s. for all n and Y is integrable, then $EX_{n} \to EX$
Usage:
all K_{n} must be dominated
integrable T .
We can show if $M(H) < \infty$ for any $f \in [-E, E]$,
then $df M(GH)[_{f=0} = FX$,
then $df M(GH)[_{f=0} = FX$,
 $M = M(GH) = F exp(XH)$, in oment generates freeth.
Merecan $M = M(GH) = F exp(XH)$, in oment $f = M(GH) = M(GH)$

Γ

For $h \in (-\xi_2, \xi_2)$ (Prouf.) $\frac{H(h) - H(0)}{h} = I = \frac{e^{hX} - I}{h}$ Note that ling ehr -1 - X. Note also that $\left(\frac{e^{hx}-1}{h}\right) = \left(\frac{hx}{h}\right)^2 = \left(\frac{x}{e^{3x}}\right)^2$ by mean value theorem, when 3 is between 0 and h. $|u| \in e^{u} + e^{u}$ 3-7 $\left|\frac{e^{hT}-1}{h}\right| = \left|\chi\right| e^{3\chi} \qquad \text{apply to}$ $= \frac{2}{\varepsilon} \cdot \left(\frac{\varepsilon}{2}(\varkappa)\right) \cdot e^{3\chi}$ $\frac{2}{2} \cdot \left(e^{\frac{2}{2} \times e^{-\frac{2}{2} \times}} \right) \cdot e^{\frac{3}{2} \times e^{\frac{3}$ $\stackrel{\ell}{=} \frac{2}{\epsilon} \left(e^{\epsilon \times} - e^{\epsilon \times} \right)$ integrable by assanting.

By dominated converger theorem, $\lim_{h \to 0} \mathbb{E} \frac{e^{hr} - 1}{h} = \mathbb{E} \lim_{h \to 0} \frac{\mathbb{E} e^{hr} - 1}{h}$

= (F X

Delta Method

More about CLT: Delta method

Suppose X_n are i.i.d. random variables with $EX_n = 0$, $VAR(X_n) = \sigma^2 > 0$. Let g be a measurable function that is differentiable at 0 with $g'(0) \neq 0$. Then

$$\sqrt{n}\left(g\left(rac{\sum_{k=1}^{n} X_{k}}{n}
ight) - g(0)
ight)
ight) o N(0, \sigma^{2}g'(0)^{2})$$
 weakly.

Proof under stronger assumption: Here, we suppose g is continuously differentiable on \mathbb{R} . If you are interested in a general proof refer to Robert Keener's *Theoretical Statistics*.

By mean value theorem, there easts
$$C_{n}$$
 Sif,
 $g(\overline{\chi}) - g(o) = g'(C_{n}) \cdot \overline{\chi}$, when
 G_{n} rs between O al $\overline{\chi}$.
July 24, 2024 21/18

 $B_{\gamma} SLLN, \lim_{m \to \infty} \overline{\chi} = 0 \quad a.s.,$ Since Cu is between O and X, lim Cy=0 G.S. Suc 9 is continuously differentruble. $\lim_{m \to 10} \mathcal{G}(C_n) = \mathcal{G}(0)$ B_7 CL7, $\overline{M_X} \xrightarrow{d} N(0, \sigma^2)$. Then fue, by SLutsky's theorem. $(g(x)-g(0)) = g'(C_1) \cdot \int X$ \sqrt{N} $\xrightarrow{\mathcal{A}} g'(o) \cdot \mathcal{N}(o, \sigma^2)$ $= \mathcal{N}(0, \sigma^{2} g'(0)^{2})$

Problem Set

Problem 1: Prove that on a complete probability space, if $X_n \xrightarrow{a.s.} X, Y_n \xrightarrow{a.s.} Y$, then $X_n + Y_n \xrightarrow{a.s.} X + Y$.

Problem 2: Prove that on a complete probability space, if $X_n \xrightarrow{P} X, Y_n \xrightarrow{P} Y$, then $X_n + Y_n \xrightarrow{P} X + Y$.

Problem 3: A bank teller serves customers standing in the queue one by one. Suppose that the service time X_i for customer *i* has mean $\mathbb{E}(X_i) = 2$ (minutes) and $Var(X_i) = 1$. We assume that service times for different bank customers are independent. Let Y be the total time the bank teller spends serving 50 customers. Find $\mathbb{P}(90 < Y < 110)$.

