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Recap

Learnt in last module:

® Stochastic convergence

> Convergence in distribution
Convergence in probability
Convergence almost surely
Convergence in L

>
>
>
> Relationship between convergences
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Outline

e Convergence of functions of random variables
> Slutsky's theorem
> Continuous mapping theorem

® |aws of large numbers

> WLLN
> SLLN
> Glivenko-Cantelli theorem

® Central limit theorem
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Convergence of functions of random variables

Recall: Stochastic convergence If X,, — X, Y,, — Y in some sense, how is the
limiting property of A X, Yn)?
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Convergence of functions of random variables

Recall: Stochastic convergence If X,, — X, Y,, — Y in some sense, how is the
limiting property of A X, Yn)?

Convergence of functions of random variables (a.s.)

Suppose the probability space is complete, if X, == X, Y, == Y, then for any real
numbers a, b,

e 2X, + bY, =25 aX + bY:
e X,Y, 225 XY.

Remark:

® Still require all the random variables to be defined on the same probability space
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Convergence of functions of random variables

Convergence of functions of random variables (probability)

Suppose the probability space is complete, if X, Lt X, Yy i Y, then for any real
numbers a, b,

e aX,+ bY, B ax+ by
e XY, 5 xv

Remark:

® Still require all the random variables to be defined on the same probability space
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Convergence of functions of random variables
7
~ )
Lo & [ |

Convergence of functions of random variables (LP)

Suppose the probability space is complete, if X, i X, Y, L, Y, then for any real
numbers a, b,

e aX, + bY, £ ax + bY:

Remark:

® Still require all the random variables to be defined on the same probability space
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Convergence of functions of random variables

Remark: Convergence in distribution is different.

Slutsky's theorem

If X, <, X and Y, @ Z((?c is a constant), then
e X,+Y, LN X+ ¢
o X,Yn S X
o X,/Ys 2 X/c, where ¢ # 0.

= UNIVERSITY OF
& TORONTO
July 24, 2024 7/18



Convergence of functions of random variables

Remark: Convergence in distribution is different.

Slutsky's theorem

If X, <, X and Y, Lt (cis a constant), then
e X,+Y, LN X+ ¢
o X,Yn S X
o X,/Ys 2 X/c, where ¢ # 0.

Remark:

® The theorem remains valid if we replace all the convergence in distribution with
convergence in probability.
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Convergence of functions of random variables

. P . .
Remark: The requirement that Y, — c (cis a constant) is necessary.
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Convergence of functions of random variables

. P . .
Remark: The requirement that Y, — c (cis a constant) is necessary.

Examples: [_\_/MO/\)
Xn ~ N(0,1), Y, = —Xp, then

o X, % Z~N(0,1), Yo% Z~ N(0,1);
° X, + Y, 50 %22

¢ XYa=-X 5 2(1); % %

* X,/Yp=-1 = -1
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Convergence of functions of random variables

Continuous mapping theorem

Let X,, X be random variables, if g(-) : R — R satisfies P(X € Dg) = 0, then
MW
* Xp TH X = g(Xn) T e(X)

p p ﬂ S5 eﬂr»\ﬁ‘q’”7 COWJL/‘MUM;
e X, =X = g(Xn) — gX);

v fo X
¢ X, S X = gX)deX);
where D, is the set of discontinuity points of g(-).
o~ — v
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Convergence of functions of random variables

Continuous mapping theorem

Let X,, X be random variables, if g(-) : R — R satisfies P(X € Dg) = 0, then
° Xy X = g(Xa) T g(X)
* X, B X = g(X) D a(X);
¢ X, S X = gX)deX);

where D, is the set of discontinuity points of g(-).

Remark:
® If g(-) is continuous, then ...

® If Xis a continuous random variable, and D, only include countably many points,
then ...
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Law of large numbers

Weak Law of Large Numbers (WLLN)

If X1,X5,---, X, are i.i.d. random variables, y = E&X3) <eoo;then
Zn X £ X / E(Y"\léw
X = Lei=1 i (P 1.
n

Remark: Ké

A more easy-to-prove version is the L? weak law, where an additional assumption
Var(X;) < oo is required.
N/\_/—\AW

Sketch of the proof:
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Law of large numbers

A generalization of the theorem: triangular array

Triangular array

A triangular array of random variables is a collection {Xj x}1<k<n-

=l —) X1 EL g
=2 — X2,1, X2, 55,
a»y — X31,X32,X33 il S3

Xn,la Xn,27 T aXn,n 5_'0:49 ih

m =7
Remark: We can consider the limiting property of the row sum S,,.
o
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Law of Large Numbers

L? weak law for triangular array

Suppose { X, } is a triangular array, n=1,2,--- ,k=1,2,--- /n. Let
Sn = g1 Xnk tn = E(Sp), if o2/b% — 0, where 02 = Var(S,,) and b, is a sequence
of positive real numbers, then

Sn_Hn ﬁ}

0.
bn |
Remark:
The L? weak law for i.i.d. random variables is a special case of that for triangular
array.
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Law of large numbers
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Law of large numbers

Proof:

Remark:
A more generalized version incorporates truncation, then the second-moment
constraint is relieved.
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Law of large numbers

Strong Law of Large Numbers (SLLN)

Let Xi, X2, -+ be an i.i.d. sequence satisfying E(X;) = p and E(]Xj|) < oo, then
X — X (a.s.!
n

Remark: The proof needs Borel-Cantelli lemma.
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Law of large numbers

Strong Law of Large Numbers (SLLN)

Let Xy, Xo, -+ be an i.i.d. sequence satisfying E(X;) = p and E(]Xj|) < oo, then
X=2zX 25
- :

Remark: The proof needs Borel-Cantelli lemma.

Glivenko-Cantelli theorem

Let Xj,i=1,---,ni.id. with distribution function F(-), and let
Fo(x) =151, l(@g x), then as n — oo,

Fuw) 5 rawde @F(x)—a(xn = 0, (as)
x€R
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Limit Theorems and Counterexamples
Recall: For the law of large numbers to hold, the assumption E|X| < oo is crucial.
—_

Law of Large Numbers fail for infinite mean i.i.d. random variables

If X1Xa,... arei.id. to X with E|Xj| = oo, then for S, = X1 + -+ + X,
P(limp_00 Sn/n € (—00,00)) = 0.

Proof: Omitted
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Central Limit Theorem

What is the limiting distribution of the sample mean?

Suppose Xi,--- X, is a sequence of i.i.d. random variables with E(X;) = p,
Var(X;) = 0% < oo, then

Col vergen

_ K W ® v{b‘S’]’Y‘fL%”’N"\ll

ﬁ(X;u) N(0,1).

Remark:
® The proof involves characteristic function.

® A more generalized CLT is referred to as “Lindeberg CLT".

= UNIVERSITY OF
& TORONTO
July 24, 2024 17/18



Central Limit Theorem

Example:

Suppose X; ~ Bernoulli(p), i.i.d., consider Z, = M, then by CLT, Z, ~ N(0,1)

asymptotically.
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Monotone Convergence Theorem

Monotone Convergence Theorem
If X, > cand X, 7 X, then EX, " EX
Usage: ﬁ
X b P(xem )=o = |- P(0)
Y

fite  05¥ 5w ok EX K
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Dominate Convergence Theorem £ 111 < ol

Dominated Convergence Theorem
If X, — X a.s. and |X,| < Ya.s. for all nand Y ig'integrablg, then EX, — EX

Usage: all G pewet he Xowl,a*“/(
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Delta Method
More about CLT: Delta method

Suppose X, are i.i.d. random variables with EX,, = 0, VAR(X,,) = 0> > 0. Let g be a
measurable function that is differentiable at 0 with g’(0) # 0. Then

vi(e <Zk-xk) €0)) ) = MO.0%¢(0)) weakl.

Proof under stronger assumption: Here, we suppose g is continuously
differentiable on R. If you are interested in a general proof refer to Robert Keener's
Theoretical Statistics.
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Problem Set

Problem 1: Prove that on a complete probability space, if X, == X, Y, = Y, then
Xo+ Yy 225 X+ Y.

Problem 2: Prove that on a complete probability space, if X, i X, Y, il Y, then
X+ Yo D X+ Y.

Problem 3: A bank teller serves customers standing in the queue one by one. Suppose
that the service time X; for customer i has mean E(X;) = 2 (minutes) and Var(X;) = 1.
We assume that service times for different bank customers are independent. Let Y be
the total time the bank teller spends serving 50 customers. Find P(90 < Y < 110).
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