

TORONTO Statistical Sciences

DoSS Summer Bootcamp Probability Module 9

Ichiro Hashimoto

University of Toronto

July 26, 2024

 Ib
 < ∃ b</td>
 < ∃ b</td>

 < ∃ b</td>
 < ∃ b</t

Outline

• Counterexamples

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Recall: A random variable $X \in L^p$ if $||X||_{L^p} = (E|X|^p)^{1/p} < \infty$. $X_n \to X$ in L^p if $\lim_{n\to\infty} ||X_n - X||_{L^p} = 0$

Monotonicity of L^p Convergence

If q > p > 0, L^q convergence implies L^p convergence

Counterexample to the Converse:
L-f
$$IP(X_{n} = M^{a}) = \frac{1}{m} = (-IP(X_{n} = 0))$$

 $\not\models [X_{n}]^{p} = \frac{1}{m} \cdot M^{ap} = M^{ap-1}, \quad \not\models [X_{n}]^{p} = M^{aq-1}$
 $Prek = a \quad so \quad fhat = ap-1 < 0 < aq-1$.
This is always possible since $q > p$.

Then,
$$\lim_{n \to \infty} \mathbb{E} |X_n|^p = 0 \neq \infty = \lim_{n \to \infty} \mathbb{E} |X_n|^p$$

that means $X_n \to 0$ in L^p but $X_n \to 0$ in L^p .

Recall: X_n converges to X in probability if for any $\epsilon > 0 \lim_{n \to \infty} P(|X_n - X| > \epsilon) = 0$.

 L^{p} convergence implies Convergence in Probability

If $X_n \to X$ in L^p , then $X_n \to X$ in probability.

Counterexample to the Converse:

Let
$$P(X_{h} = m^{t}) = \frac{1}{n} = [-P(X_{h} = 0)]$$

For $a_{7} \in 200$, $P(|X_{h} - 0| \ge \varepsilon) = P(|X_{h} = m^{t_{h}}) = \frac{1}{n} \rightarrow 0$
So f_{er} sufficiently large m .
So $X_{h} \rightarrow 0$ in probability

 $|\mathbf{F}(\mathbf{X}_{n}|^{p} = \frac{1}{m} \cdot (n^{q})^{p} = 1 \quad \forall \quad \mathbf{0},$ Thus Kn does not compe to O in LP.

Recall: X_n converges to X in probability if for any $\epsilon > 0 \lim_{n \to \infty} P(|X_n - X| > \epsilon) = 0$.

a.s. Convergence implies Convergence in Probability

If $X_n \to X$ almost surely, then $X_n \to X$ in probability.

Counterexample to the Converse:

Let
$$\Omega = (0,1)$$
, $\pi = B(\Omega)$ Borel sets $on(0,1)$
 P on Ω be uniform measure, i.e. $P(we(\alpha,b)) = b-\alpha$
if $0 < \alpha < b < 1$.
if $0 < \alpha < b < 1$.
Define $X_{n,m}(W) = \begin{cases} 1 & \text{if } W \in (\frac{m}{n}, \frac{m+1}{n}] & 0 \le m \le m-1 \\ 0 & \text{otherwise.} \end{cases}$

. .

This makes $P(X_{n,M} = 1) = \frac{1}{n} = (-P(X_{n,M} = 0))$ So, $P(X_{n,M} = 2) \stackrel{\text{tr}}{\longrightarrow} 0 \quad \text{as} \quad n \to \infty$. Thus $X_{n,M} \to 0$ in probability.

But for each
$$W \in (0,1)$$
.
Then by the construction,
 $X_{h,m}(w) = 1$ for individing may n,m
(For each n , you can ful m set.
 $W \in (\frac{m}{n}, \frac{mm}{n}]$)
Thus $X_{h,m} \to 0$ for any point on Ω .

Recall: X_n converges to X in distribution if for any continuity point x of $P(X \le x)$, $\lim_{n\to\infty} P(X_n \le x) = P(X \le x)$ holds.

Convergence in Probability implies Convergence in Distribution

If $X_n \to X$ in probability, then $X_n \to X$ in distribution.

Counterexample to the Converse:

Let
$$X \sim symmetric Dernoulli (1) i.e. (P(X = 1) = \frac{1}{2} = D(X = -1)$$

Define $X_n = (-1)^n X$.
Sinc X is symmetric, $X_n = a X$ for any n .
Then form, $X_n \rightarrow X$ in distribution,

However, for any odd
$$m$$
,
 $P\left(|x_n - x| > 1 \right) = \int s_{nx} x_n = -x$ at
 $|k| = 0$.

Recall: X_n converges to X in distribution if for any continuity point x of $P(X \le x)$, $\lim_{n\to\infty} P(X_n \le x) = P(X \le x)$ holds.

Convergence in Probability implies Convergence in Distribution

If $X_n \to X$ in probability, then $X_n \to X$ in distribution.

Special case when the Converse holds:/

we dis cussed this slide before

Monotone Convergence Theorem

If
$$X_n \ge 0$$
 and $X_n \nearrow X$, then $EX_n \nearrow EX$

Counterexample when X_n is not lower bounded:

 $X_n = \frac{X}{n}$

Let X be
$$\mathbb{P}(X = -2^{t}) = 2^{-t}$$
 for $t \ge 1, 2, 3, -\cdots$.
then $\mathbb{P}(X < 0) = 1, t \ge ... \times < 0$ a.s.

Sm XCO as. Xn P. O.

Appartly,
$$E 0 = 0$$
.

However
$$I \not \models X_{1} = \frac{1}{n} \cdot I \not \models X$$

 $= \frac{1}{n} \cdot \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} = -\infty$
 $= \frac{1}{2} \cdot \frac$

Lt
$$\Omega = (0,1)$$
 with uniform distribution P.
cr. P ($W \in (a,b)$) = b-a if $0 \leq a \leq b \leq l$
Then define $X_{11}(W)$ as follows.
 $M = \frac{1}{2} = \frac{1}{2} = \frac{1}{2}$
 $M = \frac{1}{2} = \frac{1}{2}$