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Roadmap

A bridge connecting undergraduate probability and graduate probability

Undergraduate-level probability

• Concrete;

• Examples and scenarios;

• Rely on computation...

Graduate-level probability

• Abstract (measure theory);

• Laws and properties;

• Rely on construction and inference...
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Roadmap

Random Variable  
(A function)Distribution Functions

Inequalities

Moments

Random Vector

Conditional and Joint Probability

Functions of random variables

Independence

Measurable Spaces

Series of Random Variables

Process

Limit Theorems

Figure: Roadmap
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Outline

• Measurable spaces

ω Sample Space

ω ε-algebra

• Probability measures

ω Measures on ε-field
ω Basic results

• Conditional probability

ω Bayes’ rule

ω Law of total probability
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Measurable spaces

Sample Space

The sample space ! is the set of all possible outcomes of an experiment.

Examples:

• Toss a coin: {H,T}
• Roll a die: {1, 2, 3, 4, 5, 6}

Event

An event is a collection of possible outcomes (subset of the sample space).

Examples:

• Get head when tossing a coin: {H}
• Get an even number when rolling a die: {2, 4, 6}
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What is the motivation for developoy measure theory ?

1 ) obserration fron simple exaples

T 凸scrutu) R

: { HH , HT ,TH,TT} ,
→

dicsrete.

(PCHH ) = PCHT ) = RCTH) = DCTT) : 市
Lut X = the namter of H

.

1P ( X = 0) = P (x=2) = 市 ､

CX= D = 主

1R ( X = 0 ) + 1P (×= ) 切 (×= 2) = 1

EX =ott 立々 ､ し

Gouesim
y - N (µ, α)

Densitypix )= のexp(
一器 )

S
.

in pex) ax = 1

EX = {
.

nxpex) dx =µ
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coutin uus

P (XEx ) : Ʃ P ( x = e) P (Xy) = f
.
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pixidx

生 X = ｡
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PCX :µ )EX = f .
n"

xpixnox

Q .

Is there ary way
to explam both in a unitial
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2) Further Observation

It AAB =φ ,
then P (AOB) = P(A) + 1P ( B)､-*

For a dissrute cale
,

{ X : k} ave disjout
.

Repeatug (*)
,

に p( e )=
countable sum

But for continuuag case
.

IP (X= x ) = 0 for any
xER

.

uncontable sum cannot he

Therefore
, τ defined well

.

回 Ʃ｡⑩
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contradiction ?

⇒uncountable sum is problematre !



Measurable spaces

ω-algebra

A ω-algebra (ω-field) F on ! is a non-empty collection of subsets of ! such that

• If A → F , then A
c → F ,

• If A1,A2, · · · → F , then ↑→
i=1Ai → F .

Remark: ⊋,! → F
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constroatinofProbabliy

pefoetholletinof cabntsof f. ,
F
lr - lgehin?

an whish we define
"

Probability meesune "

2)Define. asa furetim

IP : F → { 0, 1}

which hes
"

countable additivity"

3 ) ( 2, 万, P) iscalled
"

prokbiltt, triple
.

"

つれ λ

sawple σ -a
{gehoa probability

measure .
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.



Probability measures

Measures on ω-field

A function µ : F → R
+ ↑ {+↓} is called a measure if

• µ(⊋) = 0,

• If A1,A2, · · · ↔ F and Ai ↗ Aj = ⊋, then µ(↑→
i=1Ai ) =

∑→
i=1 µ(Ai ).

If µ(!) = 1, then µ is called a probability measure.

Properties:

• Monotonicity: A ↘ B ≃ µ(A) ⇐ µ(B)

• Subadditivity: A ↘ ↑→
i=1Ai ≃ µ(A) ⇐

∑→
i=1 µ(Ai )

• Continuity from below: Ai ⇒ A ≃ µ(Ai ) ⇒ µ(A)

• Continuity from above: Ai ⇑ A and µ(Ai ) < ↓ ≃ µ(Ai ) ⇑ µ(A)
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Probability measures

Proof of continuity from below:
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Probability measures

Proof of continuity from above:

Remark: µ(Ai ) < → is vital.
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AIDA RAIZALTA' - - , Ai = A .

LtBi = A -Ai , we har Bit . AlA
.

By the continuity from be low

I . mµ (B) = µ C' B0 ] :M (A'A ?
iys

Since-U(AA)A .) - µCA)al

ー
µ ( B :) =µA" AD:U ( A､ D - µ( Aa),

↳ µ (A. ) -(mis U( A ) : µ(A . ) 'U (A)

ε . .LinM(AEJ :UCAY ｢

it∞



Probability measures

Examples:

! = {ω1,ω2, · · · }, A = {ωa1 , · · · ,ωai , · · · } ↑ µ(A) =
∑→

j=1 µ(ωaj ).

Therefore, we only need to define µ(ωj) = pj ↓ 0.

If further
∑→

i=1 pj = 1, then µ is a probability measure.

• Toss a coin:

• Roll a die:
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space
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DifferencebetweenRieman integral .

Riemann integual
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Exarh, of
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P
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Is nou- tuiricl n - algebra always possible ?

A
.
Yes
, ky

"

generatry
"

r -algebre

from arbitray collection of subsets
.

Iit A.be a collectinof cabarts of f .

There . exists the smcllest o- algebra F

coutary A
,
ie . A CF .

Such o is lencted hy σ(A )

andcalled a - algebra generetal by d .

(pf ) Recall tht P (2) is a r
- algetra

aned A C PC2)
.

Lif F = A 1 ←Thisdetivcitin is valid

s : all aralgehra P (2) is an ecaple
of は

contairy A
.

Since intersectinof σ- algebrasisalsoa σ
-algebra

,

Idefindahove must be the smallest rralgebra

con taing A
.



I . How con weconstnact a"nseful " r -algebra onk
.

A .
Yes

.

We can generate a uafulrralgebracontary all internds.

( CG b )
generate complementatishrein.conntkble inteseatdo0

complentのcontube wnon of above

countabls onteccath

reput thisprocessforever
→

thig a
-algebraiscalleed Bord suts

.

We dencte this by R
.



R contaiss

- all open sets ) t combinatin of them
- all closed sets

A ER A is "measurable
"

Q
.

Is there ay subsut of ethht is not measorble ?

A . Yes
,

but the proof relies the Axion of choice .



Conditional probability

Original problem:

• What is the probability of some event A?

• P(A) is determined by our probability measure.

New problem:

• Given that B happens, what is the probability of some event A?

• P(A | B) is the conditional probability of the event A given B .

Example:

• Roll a die: P({2} | even number)
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Conditional probability

Bayes’ rule

P(A | B) = P(A → B)

P(B)
, P(B) > 0

Remark: Does conditional probability P(· | B) satisfy the axioms of a probability

measure?
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Conditional probability

Multiplication rule

P(A → B) = P(A | B)P(B) = P(B | A)P(A)

Generalization:

Law of total probability

Let A1,A2, · · · ,An be a partition of ω, such that P(Ai ) > 0, then

P(B) =

n∑

i=1

P(Ai )P(B | Ai )
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Problem Set

Problem 1: Prove that for a ε-field F , if A1,A2, · · · ↑ F , then →→
i=1Ai ↑ F .

Problem 2: Prove monotonicity and subadditivity of measure µ on ε-field.

Problem 3: (Monty Hall problem) Suppose you’re on a game show, and you’re given

the choice of three doors: Behind one door is a car; behind the others, goats. You pick

a door, say No. 1, and the host, who knows what’s behind the doors, opens another

door, say No. 3, which has a goat. He then says to you, ”Do you want to pick door

No. 2?” Is it to your advantage to switch your choice?

(Assumptions: the host will not open the door we picked and the host will only open

the door which has a goat.)
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