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Recap

Learnt in last module:

• Joint and marginal distributions
ω Joint cumulative distribution function
ω Independence of continuous random variables

• Functions of random variables
ω Convolutions
ω Change of variables
ω Order statistics
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Outline

• Moments
ω Expectation, Raw moments, central moments
ω Moment-generating functions

• Change-of-variables using MGF
ω Gamma distribution
ω Chi square distribution

• Conditional expectation
ω Law of total expectation
ω Law of total variance
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Moments

Intuition: How do the random variables behave on average?

Expectation

Consider a random vector X and function g(·), the expectation of g(X ) is defined by
E(g(X )), where

• Discrete random vector

E(g(X )) =
∑

x

g(x)pX (x),

• Continuous random vector in Rn

E(g(X )) =

∫

Rn
g(x) dF (x) =

∫

Rn
fX (x) dx .
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Moments

Examples (random variable)

• X → Bernoulli(p): E(X ) = p · 1 + (1↑ p) · 0 = p.

• X → N (0, 1):

E(X ) =

∫ →

↑→
x

1↓
2ω

exp(↑x2

2
) dx = 0.

Examples (random vector)

• Xi → Bernoulli(pi ), i = 1, 2:

E
(
(X1,X

2
2 )

↓
)
=

(
(E(X1),E(X 2

2 ))
↓
)
= (p1, p2)

↓.
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Moments

Properties:

• E(X + Y ) = E(X ) + E(Y );

• E(aX + b) = aE(X ) + b;

• E(XY ) = E(X )E(Y ), when X ,Y are independent.

Proof of the first property:
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Moments

Raw moments

Consider a random variable X , the k-th (raw) moment of X is defined by E(X k),
where

• Discrete random variable
E(X k) =

∑

x

xkpX (x),

• Continuous random variable

E(X k) =

∫ →

↑→
xk dF (x) =

∫ →

↑→
xk fX (x) dx .

Remark:
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Moments

Central moments
Consider a random variable X , the k-th central moment of X is defined by
E((X → E(X ))k).

Remark:

• The first central moment is 0

• Variance is defined as the second central moment.

Variance
The variance of a random variable X is defined as

Var(X ) = E((X → E(X ))2) = E(X 2)→ (E(X ))2.

July 16, 2025 8 / 22

下 "

centered
"

ー

ーー



Moments

Another look at the moments:

Moment generating function (1-dimensional)

For a random variable X , the moment generating function (MGF) is defined as

MX (t) = E
[
etX

]
= 1 + tE(X ) +

t2E(X 2)

2!
+

t3E(X 3)

3!
+ · · ·+ tnE(X n)

n!
+ · · ·

Compute moments based on MGF:

Moments from MGF

E(X k) =
dk

dtk
MX (t)|t=0.
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Moments

Relationship between MGF and probability distribution:

MGF uniquely defines the distribution of a random variable.

Example:

• X ↑ Bernoulli(p)

MX (t) = E(etX ) = e0 · (1→ p) + et · p = pet + 1→ p.

• Conversely, if we know that

MY (t) =
1

3
et +

2

3
,

it shows Y ↑ Bernoulli(p = 1
3).
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Change-of-variables using MGF

Intuition: To get the distribution of a transformed random variable, it su!ces to find
its MGF first.

Properties:

• Y = aX + b, MY (t) = E(et(aX+b)) = etbMX (at).

• X1, · · · ,Xn independent, Y =
∑n

i=1 Xi , then MY (t) =
∏n

i=1MXi (t).

Remark:

MGF is a useful tool to find the distribution of some transformed random variables,
especially when

• The original random variable follows some special distribution, so that we already
know / can compute the MGF.

• The transformation on the original variables is linear, say
∑

i aiXi .
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Change-of-variables using MGF

Example: Gamma distribution

X ↑ ”(ω,ε),

f (x ;ω,ε) =
xω↑1e↑εxεω

”(ω)
for x > 0 ω,ε > 0.

Compute the MGF of X ↑ ”(ω,ε) (details omitted),

MX (t) =

(
1→ t

ε

)↑ω

for t < ε, does not exist for t ↓ ε.
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Change-of-variables using MGF

Example: Gamma distribution

Observation:

The two parameters ω,ε play di#erent roles in variable transformation.

• Summation:
If Xi ↑ ”(ωi ,ε), and Xi ’s are independent, then T =

∑
i Xi ↑ ”(

∑
i ωi ,ε).

If Xi ↑ Exp(ϑ) (this is equivalently ”((ωi = 1,ε = ϑ)) distribution), and Xi ’s are
independent, then T =

∑
i Xi ↑ ”(n,ϑ).

• Scaling:
If X ↑ ”(ω,ε), then Y = cX ↑ ”(ω, εc ).
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Change-of-variables using MGF

Example: ω2
distribution

ω2 distribution

If X → N (0, 1), then X 2 follows a ω2(1) distribution.

Find the distribution of ω2(1) distribution

• From PDF: (Module 4, Problem 2)
For X with density function fX (x), the density function of Y = X 2 is

fY (y) =
1

2
↑
y
(fX (↓

↑
y) + fX (

↑
y)), y ↔ 0,

this gives

fY (y) =
1↑
2ε

y→
1
2 exp(↓y

2
).
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Change-of-variables using MGF

Find the distribution of ω2(1) distribution (continued)

• From MGF:

MY (t) = E(etX 2
) =

∫ ↑

→↑
exp(tx2)

1↑
2ε

exp(↓x2

2
) dx

=

∫ ↑

→↑

1↑
2ε

exp

(
↓ x2

2(1↓ 2t)→1

)
dx

= (1↓ 2t)→
1
2

∫ ↑

→↑
N (0, (1↓ 2t)→1) dx , t <

1

2

= (1↓ 2t)→
1
2 , t <

1

2
.

By observation, ω2(1) = !(12 ,
1
2).
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Change-of-variables using MGF

Generalize to the ω2(d) distribution

ω2(d) distribution

If Xi , i = 1, · · · , d are i.i.d N (0, 1) random variables, then
∑d

i=1 X
2
i → ω2(d).

By properties of MGF, ω2(d) = !(d2 ,
1
2), and this gives the PDF of ω2(d) distribution

x
d
2→1e→

x
2

2
d
2 !(d2 )

for x > 0.
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Conditional expectation

From expectation to conditional expectation:

How will the expectation change after conditioning on some information?

Conditional expectation

If X and Y are both discrete random vectors, then for function g(·),
• Discrete:

E(g(X ) | Y = y) =
∑

x

g(x)pX |Y=y (x) =
∑

x

g(x)
P(X = x ,Y = y)

P(Y = y)

• Continuous:

E(g(X ) | Y = y) =

∫ ↑

→↑
g(x)fX |Y (x |y)dx =

1

fY (y)

∫ ↑

→↑
g(x)fX ,Y (x , y)dx .
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Conditional expectation

Properties:

• If X and Y are independent, then

E(X | Y = y) = E(X ).

• If X is a function of Y , denote X = g(Y ), then

E(X | Y = y) = g(y).

Sketch of proof:
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Conditional expectation

Remark:

By changing the value of Y = y , E(X | Y = y) also changes, and E(X | Y ) is a
random variable (the randomness comes from Y ).

Total expectation and conditional expectation

Law of total expectation

E(E(X | Y )) = E(X )

Proof: (discrete case)
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Conditional expectation

Total variance and conditional variance

Conditional variance

Var(Y | X ) = E(Y 2 | X )→ (E(Y | X ))2 .

Law of total variance

Var(Y ) = E[Var(Y | X )] + Var(E[Y | X ]).

Remark:
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Conditional expectation
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Problem Set

Problem 1: Prove that E(XY ) = E(X )E(Y ) when X and Y are independent.
(Hint: simply consider the continuous case, use the independent property of the joint
pdf)

Problem 2: For X ↑ Uniform(a, b), compute E(X ) and Var(X ).

Problem 3: Determine the MGF of X ↑ N (µ,ω2).
(Hint: Start by considering the MGF of Z ↑ N (0, 1), and then use the transformation
X = µ+ ωZ )
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Problem Set

Problem 4: The citizens of Remuera withdraw money from a cash machine according
to X = 50, 100, 200 with probability 0.3, 0.5, 0.2, respectively. The number of
customers per day has the distribution N ↑ Poisson(ε = 10). Let
TN = X1 + X2 + · · ·+ XN be the total amount of money withdrawn in a day, where
each Xi has the probability above, and Xi ’s are independent of each other and of N.

• Find E(TN),

• Find Var(TN).
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