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Recap

Learnt in last module:

® Moments

> Expectation, Raw moments, central moments
> Moment-generating functions

® Change-of-variables using MGF
> Gamma distribution
> Chi square distribution

e Conditional expectation

> Law of total expectation
> Law of total variance
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Outline

e Covariance

> Covariance as an inner product

> Correlation

> Cauchy-Schwarz inequality

> Uncorrelatedness and Independence

e Concentration

> Markov's inequality
> Chebyshev's inequality
> Chernoff bounds
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Covariance

Recall the property of expectation:

E(X + Y) = E(X) + E(Y).

W UNIVERSITY OF
& TORONTO
July 17, 2025 4/19



Covariance

Recall the property of expectation:

E(X + Y) = E(X) + E(Y).

What about the variance?

Var(X + Y) =E(X + Y —E(X) — E(Y))?
=E(X —E(X))?2 +E(Y —E(Y))? + 2E((X — E(X))(Y — E(Y)))
= Var(X) + Var(Y) + 2 E((X — E(X))(Y —E(Y)))

?

W UNIVERSITY OF
& TORONTO
July 17, 2025 4/19



Covariance

Intuition:
A measure of how much X, Y change together.
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Covariance

Intuition:
A measure of how much X, Y change together.

Covariance

For two jointly distributed real-valued random variables X, Y with finite second
moments, the covariance is defined as

Cov(X, Y) = E((X — E(X))(Y — E(Y))).

Simplification:
Cov(X,Y) =E(XY) - E(X)E(Y).

& TORONTO
July 17, 2025 5/19



Covariance

Properties:
® Cov(X,X)= Var(X) > 0;
e Cov(X,a)= a is a constant;

e Cov(X,Y)= Cov(Y X);

e Cov(aX,bY) = abCov(X,Y).
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Covariance

Properties:
® Cov(X,X)= Var(X) > 0;
e Cov(X,a)= a is a constant;
e Cov(X,Y)= Cov(Y X);
® Cov(X+a,Y+b)= Cov(X,Y);
e Cov(aX,bY) = abCov(X,Y).

Corollary about variance:

Var(aX + b) = a*Var(X).
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Covariance

Relate covariance to inner product:

Inner product (not rigorous)

Inner product is a operator from a vector space V to a field F (use R here as an
example): < -+ >: V x V — R that satisfies:

® Symmetry: < x,y >=<y,x >;
® Linearity in the first argument: < ax+ by,z >=a<x,z>+b<y,z >;

® Positive-definiteness: < x,x >>0,and < x,x >=0& x=0
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Covariance

Relate covariance to inner product:

Inner product (not rigorous)

Inner product is a operator from a vector space V to a field F (use R here as an
example): < -+ >: V x V — R that satisfies:

® Symmetry: < x,y >=<y,x >;
® Linearity in the first argument: < ax+ by,z >=a<x,z>+b<y,z >;

® Positive-definiteness: < x,x >>0,and < x,x >=0& x=0

Remark:

Covariance defines an inner product over the quotient vector space obtained by taking
the subspace of random variables with finite second moment and identifying any two
that differ by a constant.
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Covariance

Properties inherited from the inner product space

Recall in Euclidean vector space:
o <xy>=x'y =311y
® ||x|]a = /< X, x >

* <x,y >=|[x][2- |lyll2 cos(6)-

Respectively:
e < X,Y >= Cov(X,Y),
o [IX]| = v/Var(X);
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Covariance

A substitute for cos(6):

Correlation

For two jointly distributed real-valued random variables X, Y with finite second
moments, the correlation is defined as

B B Cov(X,Y)
— Y Var(X) - Var(Y)

Corr(X,Y)
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Covariance

A substitute for cos(6):

Correlation

For two jointly distributed real-valued random variables X, Y with finite second
moments, the correlation is defined as

Cov(X,Y)

Corr{X, ¥) = pxy = J/Var(X) - Var(Y)

Uncorrelatedness:

X, Y uncorrelated < Corr(X,Y) =0.
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Covariance

Cauchy-Schwarz inequality

|Cov(X, Y)| < +/Var(X)Var(Y).

Proof:
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Covariance

Uncorrelatedness and Independence:

Observe the relationship:

Corr(X,Y)=0 < Cov(X,Y)=0 < E(XY)=E(X)E(X)
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Covariance

Uncorrelatedness and Independence:
Observe the relationship:
Corr(X,Y)=0 < Cov(X,Y)=0 < E(XY)=E(X)E(X)
Conclusions:

® |ndependence = Uncorrelatedness

® Uncorrelatedness == Independence

Remark:
Independence is a very strong assumption/property on the distribution.
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Covariance

Special case: multivariate normal

Multivariate normal

A k-dimensional random vector X = (X1, Xa,- - - ,Xk)—r follows a multivariate normal
distribution X ~ N (p, X), if

exp (—3(x = )= (x — p))
(2m)k| x|

(X1, .oy xk) =

I

where = E[X] = (E[Xl],E[XQ], .. ,E[Xk])T, and [Z],'J = Z,',j = COV(X,',)(]).

Observation:
The distribution is decided by the covariance structure.
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Covariance

K
Xi,i=1,---k independent < fx(x1,...,xx) = H fx, (xi)

Example:

e Corr(X,Y)=0
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Covariance

K
Xi,i=1,---k independent < fx(x1,...,xx) = H fx, (xi)

Example:

e Corr(X,Y)=0.7
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Covariance

K
Xi,i=1,---k independent < fx(x1,...,xx) = H fx, (xi)

Example:

e Corr(X,Y)=-07
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Concentration
Measures of a distribution:
o E(XK), E(X), Var(X);
® Cov(X,Y) and Corr(X,Y).
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Concentration
Measures of a distribution:
o E(XK), E(X), Var(X);
® Cov(X,Y) and Corr(X,Y).

Tail probability: P(|X| > t)

Figure: Probability density function of A/(0,1)
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Concentration

Concentration inequalities:

® Markov inequality
® Chebyshev inequality
® Chernoff bounds
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Concentration

Concentration inequalities:
® Markov inequality
® Chebyshev inequality
® Chernoff bounds

Markov inequality

Let X be a random variable that is non-negative (almost surely). Then, for every
constant a > 0,

Proof:
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Concentration

Markov inequality (continued)

Let X be a random variable, then for every constant a > 0,

E(1X])

P(X| 2 2) < =0

A more general conclusion:

Markov inequality (continued)

Let X be a random variable, if ®(x) is monotonically increasing on [0, c0), then for
every constant a > 0,

P(X] 2 2) = P(O(X) = (@) < =g 1.
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Concentration

Chebyshev inequality

Let X be a random variable with finite expectation E(X) and variance Var(X), then

for every constant a > 0,

Var(X
P(X ~ B(X)| > 5) < XX,
or equivalently,
1
P(X — E(X)| > av/Var(X)) < 5.
Example:
Take a = 2, 1
P(|X — E(X)| > 2y/Var(X)) < 7
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Concentration

Chernoff bound (general)
Let X be a random variable, then for t > 0,

E [et-X]
_ X t-
P(X > a) =P(e"* > e"?) < ota
and X
E |e"
P(X > a) < inf [ ]
t>0 et
Remark:
This is especially useful when considering X = "7 ; X; with X;'s independent,
E [I]; e*]
> < i i — —t-a |: t-X,} .
P(X > a) < ;gi(f) — e ;gi(f)e HE e
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Problem Set

Problem 1: Let
2 0<y<x<l1

fxy(x,y) =
x.y(x.y) {O otherwise

compute Cov(X,Y).
Problem 2: For X ~ N(0, 1), compute the Chernoff bound.
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