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Recap

Learnt in last module:

• Moments

▷ Expectation, Raw moments, central moments
▷ Moment-generating functions

• Change-of-variables using MGF

▷ Gamma distribution
▷ Chi square distribution

• Conditional expectation

▷ Law of total expectation
▷ Law of total variance
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Outline

• Covariance

▷ Covariance as an inner product
▷ Correlation
▷ Cauchy-Schwarz inequality
▷ Uncorrelatedness and Independence

• Concentration

▷ Markov’s inequality
▷ Chebyshev’s inequality
▷ Chernoff bounds
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Covariance

Recall the property of expectation:

E(X + Y ) = E(X ) + E(Y ).

What about the variance?

Var(X + Y ) = E(X + Y − E(X )− E(Y ))2

= E(X − E(X ))2 + E(Y − E(Y ))2 + 2E((X − E(X ))(Y − E(Y )))

= Var(X ) + Var(Y ) + 2E((X − E(X ))(Y − E(Y )))︸ ︷︷ ︸
?
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Covariance

Intuition:
A measure of how much X ,Y change together.

Covariance

For two jointly distributed real-valued random variables X ,Y with finite second
moments, the covariance is defined as

Cov(X ,Y ) = E((X − E(X ))(Y − E(Y ))).

Simplification:
Cov(X ,Y ) = E(XY )− E(X )E(Y ).
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Covariance

Properties:

• Cov(X ,X ) = Var(X ) ≥ 0;

• Cov(X , a) = 0, a is a constant;

• Cov(X ,Y ) = Cov(Y ,X );

• Cov(X + a,Y + b) = Cov(X ,Y );

• Cov(aX , bY ) = abCov(X ,Y ).

Corollary about variance:

Var(aX + b) = a2Var(X ).
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Covariance

Relate covariance to inner product:

Inner product (not rigorous)

Inner product is a operator from a vector space V to a field F (use R here as an
example): < ·, · >: V × V → R that satisfies:

• Symmetry: < x , y >=< y , x >;

• Linearity in the first argument: < ax + by , z >= a < x , z > +b < y , z >;

• Positive-definiteness: < x , x >≥ 0, and < x , x >= 0 ⇔ x = 0

Remark:
Covariance defines an inner product over the quotient vector space obtained by taking
the subspace of random variables with finite second moment and identifying any two
that differ by a constant.
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Covariance

Properties inherited from the inner product space

Recall in Euclidean vector space:

• < x , y >= x⊤y =
∑n

i=1 xiyi ;

• ||x ||2 =
√
< x , x >;

• < x , y >= ||x ||2 · ||y ||2 cos(θ).

Respectively:

• < X ,Y >= Cov(X ,Y );

• ||X || =
√
Var(X );
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Covariance

A substitute for cos(θ):

Correlation

For two jointly distributed real-valued random variables X ,Y with finite second
moments, the correlation is defined as

Corr(X ,Y ) = ρXY =
Cov(X ,Y )√

Var(X ) · Var(Y )
.

Uncorrelatedness:

X ,Y uncorrelated ⇔ Corr(X ,Y ) = 0.
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Covariance

Cauchy-Schwarz inequality

|Cov(X ,Y )| ≤
√
Var(X )Var(Y ).

Proof:
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Covariance

Uncorrelatedness and Independence:

Observe the relationship:

Corr(X ,Y ) = 0 ⇔ Cov(X ,Y ) = 0 ⇔ E(XY ) = E(X )E(X )

Conclusions:

• Independence ⇒ Uncorrelatedness

• Uncorrelatedness ≠⇒ Independence

Remark:
Independence is a very strong assumption/property on the distribution.
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Covariance

Special case: multivariate normal

Multivariate normal

A k-dimensional random vector X = (X1,X2, · · · ,Xk)
⊤ follows a multivariate normal

distribution X ∼ N (µ,Σ), if

fX(x1, . . . , xk) =
exp

(
−1

2(x− µ)TΣ−1(x− µ)
)√

(2π)k |Σ|
,

where µ = E[X] = (E[X1],E[X2], . . . ,E[Xk ])
⊤, and [Σ]i ,j = Σi ,j = Cov(Xi ,Xj).

Observation:
The distribution is decided by the covariance structure.
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Covariance

Xi , i = 1, · · · k independent ⇔ fX(x1, . . . , xk) =
k∏

i=1

fXi
(xi )

⇔ Σ = Ik ⇔ Cov(Xi ,Xj) = 0, i ̸= j .

Example:

• Corr(X ,Y ) = 0
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Covariance

Xi , i = 1, · · · k independent ⇔ fX(x1, . . . , xk) =
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Concentration
Measures of a distribution:

• E(X k), E(X ),Var(X );

• Cov(X ,Y ) and Corr(X ,Y ).

Tail probability: P(|X | > t)

−3 −2 0 2 3
x

f
(x
)

Figure: Probability density function of N (0, 1)
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Concentration

Concentration inequalities:

• Markov inequality

• Chebyshev inequality

• Chernoff bounds

Markov inequality

Let X be a random variable that is non-negative (almost surely). Then, for every
constant a > 0,

P(X ≥ a) ≤ E(X )

a
.

Proof:
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Concentration

Markov inequality (continued)

Let X be a random variable, then for every constant a > 0,

P(|X | ≥ a) ≤ E(|X |)
a

.

A more general conclusion:

Markov inequality (continued)

Let X be a random variable, if Φ(x) is monotonically increasing on [0,∞), then for
every constant a > 0,

P(|X | ≥ a) = P(Φ(|X |) ≥ Φ(a)) ≤ E(Φ(|X |))
Φ(a)

.
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Concentration

Chebyshev inequality

Let X be a random variable with finite expectation E(X ) and variance Var(X ), then
for every constant a > 0,

P(|X − E(X )| ≥ a) ≤ Var(X )

a2
,

or equivalently,

P(|X − E(X )| ≥ a
√

Var(X )) ≤ 1

a2
.

Example:
Take a = 2,

P(|X − E(X )| ≥ 2
√
Var(X )) ≤ 1

4
.
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Concentration

Chernoff bound (general)

Let X be a random variable, then for t ≥ 0,

P(X ≥ a) = P(et·X ≥ et·a) ≤
E
[
et·X

]
et·a

,

and

P(X ≥ a) ≤ inf
t≥0

E
[
et·X

]
et·a

.

Remark:
This is especially useful when considering X =

∑n
i=1 Xi with Xi ’s independent,

P(X ≥ a) ≤ inf
t≥0

E
[∏

i e
t·Xi

]
et·a

= inf
t≥0

e−t·a
∏
i

E
[
et·Xi

]
.
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Problem Set

Problem 1: Let

fX ,Y (x , y) =

{
2 0 ≤ y ≤ x ≤ 1

0 otherwise
,

compute Cov(X ,Y ).

Problem 2: For X ∼ N (0, 1), compute the Chernoff bound.
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