

Statistical Sciences

DoSS Summer Bootcamp Probability Module 6

Ichiro Hashimoto

University of Toronto

July 17, 2025

Recap

Learnt in last module:

- Moments
 - ▶ Expectation, Raw moments, central moments
 - ▶ Moment-generating functions
- Change-of-variables using MGF
 - ▶ Gamma distribution
 - ▷ Chi square distribution
- Conditional expectation
 - ▶ Law of total expectation

 - ▶ Law of total variance

Outline

Covariance

- ▷ Covariance as an inner product
- ▶ Correlation
- ▶ Uncorrelatedness and Independence

Concentration

- ▶ Markov's inequality
- ▷ Chebyshev's inequality
- ▶ Chernoff bounds

Recall the property of expectation:

$$\mathbb{E}(X+Y)=\mathbb{E}(X)+\mathbb{E}(Y).$$

Recall the property of expectation:

$$\mathbb{E}(X+Y)=\mathbb{E}(X)+\mathbb{E}(Y).$$

What about the variance?

$$Var(X + Y) = \mathbb{E}(X + Y - \mathbb{E}(X) - \mathbb{E}(Y))^{2}$$

$$= \mathbb{E}(X - \mathbb{E}(X))^{2} + \mathbb{E}(Y - \mathbb{E}(Y))^{2} + 2\mathbb{E}((X - \mathbb{E}(X))(Y - \mathbb{E}(Y)))$$

$$= Var(X) + Var(Y) + 2\mathbb{E}((X - \mathbb{E}(X))(Y - \mathbb{E}(Y)))$$

Intuition:

A measure of how much X, Y change together.

Intuition:

A measure of how much X, Y change together. 2 Vol(X) + 2 Cor(X, Y) + V Vol(X)

Covariance

For two jointly distributed real-valued random variables X, Y with finite second moments, the covariance is defined as

$$Cov(X, Y) = \mathbb{E}((X - \mathbb{E}(X))(Y - \mathbb{E}(Y))).$$

Simplification:

Var (x1x) = Var(x) (Va(7) + 2 Cor(x, Y)

$$Cov(X, Y) = \mathbb{E}(XY) - \mathbb{E}(X)\mathbb{E}(Y).$$

$$(PF) \quad Cov(X,Y) = \mathbb{E}\left((X-E\times)(Y-EY)\right) = \mathbb{E}(XY - \mathbb{E}(EX)Y) - \mathbb{E}(X\cdot EY) + \mathbb{E}(EX)(XY)$$

NIVERSITY OF $= \left(\mathbb{E}(X^{7}) - \left(\mathbb{E}X \right) \cdot \left(\mathbb{E}X \right) - \left(\mathbb{E}X \right) \cdot \left(\mathbb{E}X \right) + \left(\mathbb{E}X \right) \cdot \left(\mathbb{E}X \right) \right)$ $= \left(\mathbb{E}(X^{7}) - \left(\mathbb{E}X \right) \cdot \left(\mathbb{E}X \right) \cdot \left(\mathbb{E}X \right) \right) + \left(\mathbb{E}X \right) \cdot \left(\mathbb{E}X \right) \cdot \left(\mathbb{E}X \right) = \left(\mathbb{E}X \right) \cdot \left(\mathbb{E}X \right) \cdot \left(\mathbb{E}X \right) \cdot \left(\mathbb{E}X \right) = \left(\mathbb{E}X \right) \cdot \left(\mathbb{E}X \right) \cdot \left(\mathbb{E}X \right) = \left(\mathbb{E}X \right) \cdot \left(\mathbb{E}X \right) \cdot \left(\mathbb{E}X \right) = \left(\mathbb{E}X \right) \cdot \left(\mathbb{E}X \right) \cdot \left(\mathbb{E}X \right) = \left(\mathbb{E}X \right) \cdot \left(\mathbb{E}X \right) \cdot \left(\mathbb{E}X \right) = \left(\mathbb{E}X \right) \cdot \left(\mathbb{E}X \right) \cdot \left(\mathbb{E}X \right) = \left(\mathbb{E}X \right) \cdot \left(\mathbb{E}X \right) \cdot \left(\mathbb{E}X \right) = \left(\mathbb{E}X \right) \cdot \left(\mathbb{E}X \right) \cdot \left(\mathbb{E}X \right) = \left(\mathbb{E}X \right) \cdot \left(\mathbb{E}X \right) \cdot \left(\mathbb{E}X \right) = \left(\mathbb{E}X \right) \cdot \left(\mathbb{E}X \right) \cdot \left(\mathbb{E}X \right) = \left(\mathbb{E}X \right) \cdot \left(\mathbb{E}X \right) \cdot \left(\mathbb{E}X \right) = \left(\mathbb{E}X \right) \cdot \left(\mathbb{E}X \right) \cdot \left(\mathbb{E}X \right) = \left(\mathbb{E}X \right) \cdot \left(\mathbb{E}X \right) \cdot \left(\mathbb{E}X \right) = \left(\mathbb{E}X \right) \cdot \left(\mathbb{E}X \right) \cdot \left(\mathbb{E}X \right) = \left(\mathbb{E}X \right) = \left(\mathbb{E}X \right) \cdot \left(\mathbb{E}X \right) = \left(\mathbb{E}X \right) \cdot \left(\mathbb{E}X \right) = \left(\mathbb{E}X \right) \cdot \left(\mathbb{E}X \right) = \left(\mathbb{E}X \right) = \left(\mathbb{E}X \right) \cdot \left(\mathbb{E}X \right) = \left(\mathbb{E}X \right) \cdot \left(\mathbb{E}X \right) = \left(\mathbb{E}X \right) =$

July 17, 2025 5 / 19

Properties:

- Cov(X, X) = Var(X) > 0;
- Cov(X,a) = 0, a is a constant; \Rightarrow $Cov(X,a) = \mathbb{F}((x-ax) (a-ax)) = \mathbb{F}(6) = 0$ Eq=a
- Cov(X, Y) = Cov(Y, X);
- Cov(aX, bY) = abCov(X, Y).

Properties:

- Cov(X, X) = Var(X) > 0;
- Cov(X, a) = 0, a is a constant;
- Cov(X, Y) = Cov(Y, X);
- Cov(X + a, Y + b) = Cov(X, Y); Cov(aX, bY) = abCov(X, Y).

Corollary about variance:

$$Var(aX + b) = a^2 Var(X).$$

Relate covariance to inner product:

Inner product (not rigorous)

Inner product is a operator from a vector space V to a field F (use $\mathbb R$ here as an example): $\langle \cdot, \cdot \rangle : V \times V \to \mathbb{R}$ that satisfies:

- Symmetry: $\langle x, y \rangle = \langle y, x \rangle$;
- Linearity in the first argument: $\langle ax + by, z \rangle = a \langle x, z \rangle + b \langle y, z \rangle$;
- Positive-definiteness: $\langle x, x \rangle \geq 0$, and $\langle x, x \rangle = 0 \Leftrightarrow x = 0$

Relate covariance to inner product:

Inner product (not rigorous)

Inner product is a operator from a vector space V to a field F (use \mathbb{R} here as an example): $\langle \cdot, \cdot \rangle \colon V \times V \to \mathbb{R}$ that satisfies:

- Symmetry: < x, y > = < y, x >;
- Linearity in the first argument: $\langle ax + by, z \rangle = a \langle x, z \rangle + b \langle y, z \rangle$;
- Positive-definiteness: $\langle x, x \rangle \geq 0$, and $\langle x, x \rangle = 0 \Leftrightarrow x = 0$

Remark:

Covariance defines an inner product over the quotient vector space obtained by taking the subspace of random variables with finite second moment and identifying any two that differ by a constant.

Properties inherited from the inner product space

Recall in Euclidean vector space:

- $\langle x, y \rangle = x^{\top} y = \sum_{i=1}^{n} x_i y_i$;
- $||x||_2 = \sqrt{\langle x, x \rangle}$;
- $\langle x, y \rangle = ||x||_2 \cdot ||y||_2 \cos(\theta)$.

Respectively:

- \bullet < X, Y >= Cov(X, Y);
- $||X|| = \sqrt{Var(X)}$;

A substitute for $cos(\theta)$:

Correlation

For two jointly distributed real-valued random variables X, Y with finite second moments, the correlation is defined as

$$Corr(X,Y) = \rho_{XY} = \frac{Cov(X,Y)}{\sqrt{Var(X) \cdot Var(Y)}} = \frac{\langle X, Y \rangle}{||X|| \cdot ||X||}$$

A substitute for $cos(\theta)$:

Correlation

For two jointly distributed real-valued random variables X, Y with finite second moments, the correlation is defined as

$$Corr(X, Y) = \rho_{XY} = \frac{Cov(X, Y)}{\sqrt{Var(X) \cdot Var(Y)}}.$$

Uncorrelatedness:

$$X, Y \text{ uncorrelated } \Leftrightarrow Corr(X, Y) = 0.$$

Cauchy-Schwarz inequality

$$|Cov(X,Y)| \leq \sqrt{Var(X)Var(Y)}$$
.

Proof: Lt
$$\hat{x}$$
: $x - EX$, $\hat{Y} = \hat{Y} - E\hat{Y}$.

$$0 \leq E (\hat{x} + \hat{y}\hat{y})^2 = E\hat{x}^2 + 2tE(\hat{x} \cdot \hat{y}) + f^2E\hat{y}^2$$

$$Vol(x)$$

$$Vol(x)$$

$$Vol(x)$$

Sim this guardrotic inequality holds for any tell.,
we must have
$$D/\phi = Cov(X,Y)^2 - Von(X) Vol(Y) \leq 0$$
.

Uncorrelatedness and Independence:

Observe the relationship:

$$Corr(X,Y)=0 \Leftrightarrow Cov(X,Y)=0 \Leftrightarrow \mathbb{E}(XY)=\mathbb{E}(X)\mathbb{E}(XY)$$

Uncorrelatedness and Independence:

Observe the relationship:

$$Corr(X, Y) = 0 \Leftrightarrow Cov(X, Y) = 0 \Leftrightarrow \mathbb{E}(XY) = \mathbb{E}(X)\mathbb{E}(X)$$

Conclusions:

- Independence ⇒ Uncorrelatedness

Remark:

Independence is a very strong assumption/property on the distribution.

Special case: multivariate normal

Multivariate normal

A k-dimensional random vector $\mathbf{X}=(X_1,X_2,\cdots,X_k)^{\top}$ follows a multivariate normal distribution $\mathbf{X}\sim\mathcal{N}(\boldsymbol{\mu},\widehat{\boldsymbol{\Sigma}})$, if

$$f_{\mathbf{X}}(x_1,\ldots,x_k) = \frac{\exp\left(-\frac{1}{2}(\mathbf{x}-\boldsymbol{\mu})^{\mathrm{T}}\mathbf{\Sigma}^{-1}(\mathbf{x}-\boldsymbol{\mu})\right)}{\sqrt{(2\pi)^k|\mathbf{\Sigma}|}},$$

where
$$\mu = \mathbb{E}[\mathbf{X}] = (\mathbb{E}[X_1], \mathbb{E}[X_2], \dots, \mathbb{E}[X_k])^{\top}$$
, and $[\mathbf{\Sigma}]_{i,j} = \Sigma_{i,j} = Cov(X_i, X_j)$.

Observation:

The distribution is decided by the covariance structure.

$$X_i, i = 1, \cdots k$$
 independent $\Leftrightarrow f_{\mathbf{X}}(x_1, \dots, x_k) = \prod_{i=1}^m f_{X_i}(x_i)$
 $\Leftrightarrow \mathbf{\Sigma} = (X_i, X_j) = 0, i \neq j.$

Example:

• Corr(X, Y) = 0

$$X_i, i = 1, \dots k$$
 independent $\Leftrightarrow f_{\mathbf{X}}(x_1, \dots, x_k) = \prod_{i=1}^{K} f_{X_i}(x_i)$
 $\Leftrightarrow \mathbf{\Sigma} = I_k \Leftrightarrow Cov(X_i, X_j) = 0, i \neq j.$

Example:

• Corr(X, Y) = 0.7

$$X_i, i = 1, \dots k$$
 independent $\Leftrightarrow f_{\mathbf{X}}(x_1, \dots, x_k) = \prod_{i=1}^{K} f_{X_i}(x_i)$
 $\Leftrightarrow \mathbf{\Sigma} = I_k \Leftrightarrow Cov(X_i, X_j) = 0, i \neq j.$

Example:

• Corr(X, Y) = -0.7

She Z is PSD, in patricles symmetric,

orthogonal metric V and diagonal
$$\Delta = \begin{pmatrix} \lambda^{2} & 0 \\ 0 & \lambda^{2} \end{pmatrix}$$

(VIV = VVI=I).

Spectral decorposition

$$\Sigma^{-1} = V \Delta^{-1} V^{T}$$
(X-M) $\Sigma^{-1} (X-M) = \begin{pmatrix} V^{T}(X-M) \end{bmatrix}^{T} \Delta^{-1} \begin{pmatrix} V^{T}(X-M) \end{bmatrix} = 2^{T} \Delta^{-1} 2$

Let $\Sigma^{-1} (X-M) = 2^{T} \Delta^{-1} 2$

$$= \sum_{i \geq 1}^{n} \lambda_{i}^{-1} 2^{2} 2^{2}$$
Also, since V is orthogonal, $|V| = 1$

Thus charge of variable into $\Sigma^{-1} (X-M) = 2^{T} \Delta^{-1} X^{-1} + 2^{T} \Delta^{-1} X^{-$

This expression implies Zi's are independent.

In turns of Zo's (or(2)= A: diagonal

Measures of a distribution:

- $\mathbb{E}(X^k)$, $\mathbb{E}(X)$, Var(X);
- Cov(X, Y) and Corr(X, Y).

Measures of a distribution:

- $\mathbb{E}(X^k)$, $\mathbb{E}(X)$, Var(X);
- Cov(X, Y) and Corr(X, Y).

Tail probability: P(|X| > t)

Figure: Probability density function of $\mathcal{N}(0,1)$

Concentration inequalities:

- Markov inequality
- Chebyshev inequality
- Chernoff bounds

Concentration inequalities:

- Markov inequality
- Chebyshev inequality
- Chernoff bounds

Markov inequality

Let X be a random variable that is non-negative (almost surely). Then, for every constant a > 0,

$$\mathbb{P}(X \geq a) \leq \frac{\mathbb{E}(X)}{a}.$$

Proof: We use monotonicity of expectation, i.e.

If X37 then EXZET,

 $\begin{cases}
x = a & \begin{cases} x \ge a \end{cases} \\
x & \begin{cases} x \ge a \end{cases}
\end{cases}$ $\begin{cases}
x \le c \end{cases}$

Som Y & X, we have

 $\mathbb{E} \times \mathbb{Z} = \mathbb{F} \left[\alpha \cdot \mathcal{I}_{(X \leq \alpha)} \right] = \alpha \cdot \mathbb{P} \left(\chi \leq \alpha \right)$

L'. $\mathbb{P}(X \leq a) \leq \frac{\mathbb{E}X}{a}$

Markov inequality (continued)

Let X be a random variable, then for every constant a > 0,

$$\mathbb{P}(|X| \geq a) \leq \frac{\mathbb{E}(|X|)}{a}.$$

A more general conclusion:

Markov inequality (continued)

Let X be a random variable, if $\Phi(x)$ is monotonically increasing on $[0,\infty)$, then for every constant a>0,

$$\mathbb{P}(|X| \geq a) = \mathbb{P}(\Phi(|X|) \geq \Phi(a)) \leq \frac{\mathbb{E}(\Phi(|X|))}{\Phi(a)}.$$

16 / 19

Chebyshev inequality

Let X be a random variable with finite expectation $\mathbb{E}(X)$ and variance Var(X), then for every constant a > 0,

$$\mathbb{P}(|X - \mathbb{E}(X)| \ge a) \le \frac{Var(X)}{a^2},$$

or equivalently,

$$\mathbb{P}(|X - \mathbb{E}(X)| \ge a\sqrt{Var(X)}) \le \frac{1}{a^2}.$$

Example:

Take a=2,

$$\mathbb{P}(|X - \mathbb{E}(X)| \ge 2\sqrt{\textit{Var}(X)}) \le \frac{1}{a}$$
.

Chernoff bound (general)

Let X be a random variable, then for $t \ge 0$,

Table, then for
$$t \geq 0$$
, this is only useful $\mathbb{P}(X \geq a) = \mathbb{P}(e^{t \cdot X} \geq e^{t \cdot a}) \leq \frac{\mathbb{E}\left[e^{t \cdot X}\right]}{e^{t \cdot a}},$ then the second useful $\mathbb{E}\left[e^{t \cdot X}\right]$

and

$$\mathbb{P}(X \geq a) \leq \inf_{t \geq 0} \frac{\mathbb{E}\left[e^{t \cdot A}\right]}{e^{t \cdot a}}.$$

Remark:

ful optimal t.

This is especially useful when considering $X = \sum_{i=1}^{n} X_i$ with X_i 's independent,

$$\mathbb{P}(X \ge a) \le \inf_{t \ge 0} \frac{\mathbb{E}\left[\prod_{i} e^{t \cdot X_{i}}\right]}{e^{t \cdot a}} = \inf_{t \ge 0} e^{-t \cdot a} \prod_{i} \mathbb{E}\left[e^{t \cdot X_{i}}\right].$$

Suppose $X: \stackrel{\text{lind}}{\sim} Z$. $P\left(\sum_{\alpha'} X_{\alpha'} Z_{\alpha}\right) \leq \inf_{t>0} \frac{\left(\mathbb{E}\left[e^{tZ}\right]\right)^{n}}{e^{t-\alpha}}$

e-9.
$$\times i$$
 Bern($\frac{1}{2}$) $= \frac{e^{t} + e^{-t}}{2} \left(\frac{1}{2} e^{t} \right)$ con make a tight hour.

Problem Set

Problem 1: Let

$$f_{X,Y}(x,y) = \begin{cases} 2 & 0 \le y \le x \le 1 \\ 0 & \text{otherwise} \end{cases}$$

compute Cov(X, Y).

Problem 2: For $X \sim \mathcal{N}(0,1)$, compute the Chernoff bound.