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Recap

Learnt in last module:

• Moments
ω Expectation, Raw moments, central moments
ω Moment-generating functions

• Change-of-variables using MGF
ω Gamma distribution
ω Chi square distribution

• Conditional expectation
ω Law of total expectation
ω Law of total variance
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Outline

• Covariance
ω Covariance as an inner product
ω Correlation
ω Cauchy-Schwarz inequality
ω Uncorrelatedness and Independence

• Concentration
ω Markov’s inequality
ω Chebyshev’s inequality
ω Cherno! bounds
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Covariance

Recall the property of expectation:

E(X + Y ) = E(X ) + E(Y ).

What about the variance?

Var(X + Y ) = E(X + Y → E(X )→ E(Y ))2

= E(X → E(X ))2 + E(Y → E(Y ))2 + 2E((X → E(X ))(Y → E(Y )))

= Var(X ) + Var(Y ) + 2E((X → E(X ))(Y → E(Y )))︸ ︷︷ ︸
?
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Covariance

Intuition:

A measure of how much X ,Y change together.

Covariance
For two jointly distributed real-valued random variables X ,Y with finite second
moments, the covariance is defined as

Cov(X ,Y ) = E((X → E(X ))(Y → E(Y ))).

Simplification:

Cov(X ,Y ) = E(XY )→ E(X )E(Y ).
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Covariance

Properties:

• Cov(X ,X ) = Var(X ) ↑ 0;

• Cov(X , a) = 0, a is a constant;

• Cov(X ,Y ) = Cov(Y ,X );

• Cov(X + a,Y + b) = Cov(X ,Y );

• Cov(aX , bY ) = abCov(X ,Y ).

Corollary about variance:

Var(aX + b) = a2Var(X ).
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Covariance

Relate covariance to inner product:

Inner product (not rigorous)

Inner product is a operator from a vector space V to a field F (use R here as an
example): < ·, · >: V ↓ V ↔ R that satisfies:

• Symmetry: < x , y >=< y , x >;

• Linearity in the first argument: < ax + by , z >= a < x , z > +b < y , z >;

• Positive-definiteness: < x , x >↑ 0, and < x , x >= 0 ↗ x = 0

Remark:

Covariance defines an inner product over the quotient vector space obtained by taking
the subspace of random variables with finite second moment and identifying any two
that di!er by a constant.
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Covariance

Properties inherited from the inner product space

Recall in Euclidean vector space:

• < x , y >= x→y =
∑n

i=1 xiyi ;

• ||x ||2 =
↘
< x , x >;

• < x , y >= ||x ||2 · ||y ||2 cos(ε).

Respectively:

• < X ,Y >= Cov(X ,Y );

• ||X || =
√
Var(X );
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Covariance

A substitute for cos(ε):

Correlation
For two jointly distributed real-valued random variables X ,Y with finite second
moments, the correlation is defined as

Corr(X ,Y ) = ϑXY =
Cov(X ,Y )√

Var(X ) · Var(Y )
.

Uncorrelatedness:

X ,Y uncorrelated ↗ Corr(X ,Y ) = 0.
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Covariance

Cauchy-Schwarz inequality

|Cov(X ,Y )| ≃
√
Var(X )Var(Y ).

Proof:
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Covariance

Uncorrelatedness and Independence:

Observe the relationship:

Corr(X ,Y ) = 0 ↗ Cov(X ,Y ) = 0 ↗ E(XY ) = E(X )E(X )

Conclusions:

• Independence ⇐ Uncorrelatedness

• Uncorrelatedness ⇒=⇐ Independence

Remark:

Independence is a very strong assumption/property on the distribution.
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Covariance

Special case: multivariate normal

Multivariate normal

A k-dimensional random vector X = (X1,X2, · · · ,Xk)→ follows a multivariate normal
distribution X ⇑ N (µ,!), if

fX(x1, . . . , xk) =
exp

(
→1

2(x→ µ)T!↑1(x→ µ)
)

√
(2ϖ)k |!|

,

where µ = E[X] = (E[X1],E[X2], . . . ,E[Xk ])→, and [!]i ,j = ”i ,j = Cov(Xi ,Xj).

Observation:

The distribution is decided by the covariance structure.
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Covariance

Xi , i = 1, · · · k independent ↗ fX(x1, . . . , xk) =
k∏

i=1

fXi (xi )

↗ ! = Ik ↗ Cov(Xi ,Xj) = 0, i ⇒= j .

Example:

• Corr(X ,Y ) = 0
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Concentration

Measures of a distribution:

• E(X k), E(X ),Var(X );

• Cov(X ,Y ) and Corr(X ,Y ).

Tail probability: P(|X | > t)

→3 →2 0 2 3
x

f(
x
)

Figure: Probability density function of N (0, 1)
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Concentration

Concentration inequalities:

• Markov inequality

• Chebyshev inequality

• Cherno! bounds

Markov inequality

Let X be a random variable that is non-negative (almost surely). Then, for every
constant a > 0,

P(X ↑ a) ↓ E(X )

a
.

Proof:
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Concentration

Markov inequality (continued)

Let X be a random variable, then for every constant a > 0,

P(|X | → a) ↑ E(|X |)
a

.

A more general conclusion:

Markov inequality (continued)

Let X be a random variable, if !(x) is monotonically increasing on [0,↓), then for
every constant a > 0,

P(|X | → a) = P(!(|X |) → !(a)) ↑ E(!(|X |))
!(a)

.
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Concentration

Chebyshev inequality

Let X be a random variable with finite expectation E(X ) and variance Var(X ), then
for every constant a > 0,

P(|X ↔ E(X )| → a) ↑ Var(X )

a2
,

or equivalently,

P(|X ↔ E(X )| → a
√

Var(X )) ↑ 1

a2
.

Example:

Take a = 2,

P(|X ↔ E(X )| → 2
√

Var(X )) ↑ 1

4
.
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Concentration

Cherno! bound (general)

Let X be a random variable, then for t → 0,

P(X → a) = P(et·X → et·a) ↑
E
[
et·X

]

et·a
,

and

P(X → a) ↑ inf
t→0

E
[
et·X

]

et·a
.

Remark:

This is especially useful when considering X =
∑n

i=1 Xi with Xi ’s independent,

P(X → a) ↑ inf
t→0

E
[∏

i e
t·Xi

]

et·a
= inf

t→0
e↑t·a

∏

i

E
[
et·Xi

]
.
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Problem Set

Problem 1: Let

fX ,Y (x , y) =

{
2 0 → y → x → 1

0 otherwise
,

compute Cov(X ,Y ).

Problem 2: For X ↑ N (0, 1), compute the Cherno! bound.
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