

Statistical Sciences

DoSS Summer Bootcamp Probability Module 7

Ichiro Hashimoto

University of Toronto

July 21, 2025

Recap

Learnt in last module:

- Covariance
 - ▷ Covariance as an inner product
 - ▷ Correlation
 - ▷ Cauchy-Schwarz inequality
 - ▶ Uncorrelatedness and Independence
- Concentration
 - ▶ Markov's inequality
 - ▷ Chebyshev's inequality
 - ▷ Chernoff bounds

Outline

- Stochastic convergence
 - ▷ Convergence in distribution
 - ▷ Convergence in probability
 - ▷ Convergence almost surely
 - ▷ Convergence in L^p
 - ▷ Relationship between convergences

Recall: Convergence

Convergence of a sequence of numbers

A sequence a_1, a_2, \cdots converges to a limit a if

$$\lim_{n\to\infty}a_n=a.$$

That is, for any $\epsilon > 0$, there exists an $N(\epsilon)$ such that

$$|a_n-a|<\epsilon, \quad \forall n>N(\epsilon).$$

Recall: Convergence

Convergence of a sequence of numbers

A sequence a_1, a_2, \cdots converges to a limit a if

$$\lim_{n\to\infty}a_n=a.$$

That is, for any $\epsilon > 0$, there exists an $N(\epsilon)$ such that

$$|a_n-a|<\epsilon, \forall n>N(\epsilon).$$

Example:
$$a_n = \frac{1}{n}$$
, $\forall \epsilon > 0$, take $N(\epsilon) = \lceil \frac{1}{\epsilon} \rceil$, then for $n > N(\epsilon)$,

$$|a_n-0|=a_n$$
 $\epsilon, \lim_{n\to\infty}a_n=0.$

- Capture the property of a series as $n \to \infty$;
- The limit is something where the series concentrate for large n;
- $|a_n a|$ quantifies the closeness of the series and the limit.

Observation: closeness of random variables

Sample mean of i.i.d. random variables

For i.i.d.) random variables
$$X_i, i=1,\cdots,n$$
 with $\mathbb{E}(X_i)=\mu$, $Var(X_i)=\sigma^2$, then for the sample mean $\bar{X}=\frac{1}{n}\sum_{i=1}^n X_i$,

$$\mathbb{E}(ar{X}) = \mu, \quad \mathit{Var}(ar{X}) = rac{\sigma^2}{n}.$$

Proof:
$$E(\bar{x}) = E(\frac{1}{n}\sum_{i=1}^{n}\chi_{i}) = \frac{1}{n}\sum_{i=1}^{n}E\chi_{i} = \frac{1}{n}$$
.

$$V_{cr}(\bar{x}) = \mathbb{E}(\bar{x} - \mu)^{2} = \mathbb{E}\left(\frac{1}{n}\sum_{i=1}^{n}K_{i} - \mu\right)^{2}$$

$$= \mathbb{E}\left(\frac{1}{n}\sum_{i=1}^{n}(X_{i} - \mu)\right)^{2}$$

$$= \frac{1}{n^2} \underbrace{\mathbb{E} \left[\left(\frac{1}{2} - n \right)^2 + \frac{1}{n^2} \underbrace{\mathbb{E} \left[\left(\frac{1}{2} - n \right) \left(\frac{1}{2} - n \right) \right]}_{C(1)} \underbrace{\mathbb{E} \left[\left(\frac{1}{2} - n \right) \left(\frac{1}{2} - n \right) \right]}_{C(1)} \underbrace{\mathbb{E} \left[\left(\frac{1}{2} - n \right) \left(\frac{1}{2} - n \right) \right]}_{C(1)} \underbrace{\mathbb{E} \left[\left(\frac{1}{2} - n \right) \left(\frac{1}{2} - n \right) \right]}_{C(1)} \underbrace{\mathbb{E} \left[\left(\frac{1}{2} - n \right) \left(\frac{1}{2} - n \right) \right]}_{C(1)} \underbrace{\mathbb{E} \left[\left(\frac{1}{2} - n \right) \left(\frac{1}{2} - n \right) \right]}_{C(1)} \underbrace{\mathbb{E} \left[\left(\frac{1}{2} - n \right) \left(\frac{1}{2} - n \right) \right]}_{C(1)} \underbrace{\mathbb{E} \left[\left(\frac{1}{2} - n \right) \left(\frac{1}{2} - n \right) \right]}_{C(1)} \underbrace{\mathbb{E} \left[\left(\frac{1}{2} - n \right) \left(\frac{1}{2} - n \right) \right]}_{C(1)} \underbrace{\mathbb{E} \left[\left(\frac{1}{2} - n \right) \left(\frac{1}{2} - n \right) \right]}_{C(1)} \underbrace{\mathbb{E} \left[\left(\frac{1}{2} - n \right) \left(\frac{1}{2} - n \right) \right]}_{C(1)} \underbrace{\mathbb{E} \left[\left(\frac{1}{2} - n \right) \left(\frac{1}{2} - n \right) \right]}_{C(1)} \underbrace{\mathbb{E} \left[\left(\frac{1}{2} - n \right) \left(\frac{1}{2} - n \right) \right]}_{C(1)} \underbrace{\mathbb{E} \left[\left(\frac{1}{2} - n \right) \left(\frac{1}{2} - n \right) \right]}_{C(1)} \underbrace{\mathbb{E} \left[\left(\frac{1}{2} - n \right) \left(\frac{1}{2} - n \right) \right]}_{C(1)} \underbrace{\mathbb{E} \left[\left(\frac{1}{2} - n \right) \left(\frac{1}{2} - n \right) \right]}_{C(1)} \underbrace{\mathbb{E} \left[\left(\frac{1}{2} - n \right) \left(\frac{1}{2} - n \right) \right]}_{C(1)} \underbrace{\mathbb{E} \left[\left(\frac{1}{2} - n \right) \left(\frac{1}{2} - n \right) \right]}_{C(1)} \underbrace{\mathbb{E} \left[\left(\frac{1}{2} - n \right) \left(\frac{1}{2} - n \right) \right]}_{C(1)} \underbrace{\mathbb{E} \left[\left(\frac{1}{2} - n \right) \left(\frac{1}{2} - n \right) \right]}_{C(1)} \underbrace{\mathbb{E} \left[\left(\frac{1}{2} - n \right) \left(\frac{1}{2} - n \right) \right]}_{C(1)} \underbrace{\mathbb{E} \left[\left(\frac{1}{2} - n \right) \left(\frac{1}{2} - n \right) \right]}_{C(1)} \underbrace{\mathbb{E} \left[\left(\frac{1}{2} - n \right) \left(\frac{1}{2} - n \right) \right]}_{C(1)} \underbrace{\mathbb{E} \left[\left(\frac{1}{2} - n \right) \left(\frac{1}{2} - n \right) \right]}_{C(1)} \underbrace{\mathbb{E} \left[\left(\frac{1}{2} - n \right) \left(\frac{1}{2} - n \right) \right]}_{C(1)} \underbrace{\mathbb{E} \left[\left(\frac{1}{2} - n \right) \left(\frac{1}{2} - n \right) \right]}_{C(1)} \underbrace{\mathbb{E} \left[\left(\frac{1}{2} - n \right) \left(\frac{1}{2} - n \right) \right]}_{C(1)} \underbrace{\mathbb{E} \left[\left(\frac{1}{2} - n \right) \left(\frac{1}{2} - n \right) \right]}_{C(1)} \underbrace{\mathbb{E} \left[\left(\frac{1}{2} - n \right) \left(\frac{1}{2} - n \right) \right]}_{C(1)} \underbrace{\mathbb{E} \left[\left(\frac{1}{2} - n \right) \left(\frac{1}{2} - n \right) \right]}_{C(1)} \underbrace{\mathbb{E} \left[\left(\frac{1}{2} - n \right) \left(\frac{1}{2} - n \right) \right]}_{C(1)} \underbrace{\mathbb{E} \left[\left(\frac{1}{2} - n \right) \left(\frac{1}{2} - n \right) \right]}_{C(1)} \underbrace{\mathbb{E} \left[\left(\frac{1}{2} - n \right) \left(\frac{1}{2} - n \right) \right]}_{C(1)} \underbrace{\mathbb{E} \left[\left(\frac{1}{2} - n \right) \left(\frac{1}{2} - n \right) \right]}_{C(1)} \underbrace{\mathbb{E} \left[\left(\frac{1}{2} - n \right) \left(\frac{1}{2} - n \right) \right]}_{C$$

$$= \frac{1}{n^2} \cdot n\sigma^2 + \sigma = \frac{\sigma^2}{m}.$$

Example:

Further suppose X_i , $i=1,\cdots,n$ i.i.d. with distribution $\mathcal{N}(\mu,\sigma^2)$, then $\bar{X}\sim\mathcal{N}(\mu,\frac{\sigma^2}{n})$, so we can draw the probability density plot of \bar{X} .

Example:

Further suppose X_i , $i=1,\cdots,n$ i.i.d. with distribution $\mathcal{N}(\mu,\sigma^2)$, then $\bar{X}\sim\mathcal{N}(\mu(\sigma^2))$, so we can draw the probability density plot of \bar{X} .

Figure: Probability density curve of sample mean of normal distribution

Vorree gets smaller us on increases

Intuition:

- Series of numbers $a_n \Rightarrow \text{Series of random variables } X_n$;
- Limit $a \Rightarrow \text{Limit } X$;
- How to quantify the closeness? $(|X_n X|?)$

Intuition:

- Series of numbers $a_n \Rightarrow Series of random variables <math>X_n$;
- Limit $a \Rightarrow \text{Limit } X$;
- How to quantify the closeness? $(|X_n X|?)$

Pointwise convergence / Sure convergence

Suppose random variables X_n and X are defined over the same probability space, then we say X_n converges to X pointwise if

$$\lim_{n\to\infty}X_n(\omega)=X(\omega),\ \forall\omega\in\Omega.$$

Intuition:

- Series of numbers $a_n \Rightarrow Series of random variables <math>X_n$;
- Limit $a \Rightarrow \text{Limit } X$;
- How to quantify the closeness? $(|X_n X|?)$

Pointwise convergence / Sure convergence

Suppose random variables X_n and X are defined over the same probability space, then we say X_n converges to X pointwise if

$$\lim_{n\to\infty} X_n(\omega) = X(\omega), \ \forall \omega \in \Omega.$$

Remark:

Incorporate probability measure in some sense.

Alternatives of describing the closeness:

- Utilize CDF: $F_{X_n}(x) F_X(x)$;
- Utilize probability of an event: $\mathbb{P}(|X_n X| > \epsilon)$;
- Utilize the probability over all ω : $\mathbb{P}(\lim_{n\to\infty} X_n(\omega) = X(\omega))$;
- Utilize mean/moments: $\mathbb{E}|X_n X|^p$.

Use CDF to qualify the closeness of

Convergence in distribution

A sequence X_1, X_2, \cdots of real-valued random variables is said to converge in distribution, or converge weakly to a random variable X if

$$\lim_{n\to\infty}F_n(x)=F(x),$$

for every number $x \in \mathbb{R}$ at which $F(\cdot)$ is continuous. Here, $F_n(\cdot)$ and $F(\cdot)$ are the cumulative distribution functions of the random variables X_n and X, respectively.

Notation:

$$X_n \xrightarrow{d} X$$
, $X_n \xrightarrow{\mathcal{D}} X$, $X_n \Rightarrow X$.

Convergence in distribution

A sequence X_1, X_2, \cdots of real-valued random variables is said to converge in distribution, or converge weakly to a random variable X if

$$\lim_{n\to\infty}F_n(x)=F(x),$$

for every number $x \in \mathbb{R}$ at which $F(\cdot)$ is continuous. Here, $F_n(\cdot)$ and $F(\cdot)$ are the cumulative distribution functions of the random variables X_n and X_n respectively.

Notation:

$$X_n \stackrel{d}{\to} X$$
, $X_n \stackrel{\mathcal{D}}{\to} X$, $X_n \Rightarrow X$.

Remark:

 X_n and X do not need to be defined on the same probability space.

Example:

Let $X_n = Z + \frac{1}{n}$, where $Z \sim \mathcal{N}(0,1)$, then

•
$$X_n \xrightarrow{d} Z$$
, $X_n \xrightarrow{can}$ can convey to multiple random normals at the same time.
• $X_n \xrightarrow{d} -Z$, $X_n \xrightarrow{d} -Z$ both are $X_n \xrightarrow{d} -Z$

•
$$X_n \xrightarrow{d} -Z_1$$
 Here, $Z = -2$ both are $\sim \mathcal{M}_{0,1}$

•
$$X_n \stackrel{d}{\to} Y$$
, $Y \sim \mathcal{N}(0,1)$. A new random morroller which would be defined on

Proof:

$$\mathbb{P}\left(X^{2} \leq X\right) = \mathbb{P}\left(3 \leq X - \frac{1}{2}\right)$$

on a different probehility space.

due to continuity I.

I is continuous since. N(OII) is a continuous distributions
or in other words, there exists density.

$$\overline{\psi}(x) = \int_{-\infty}^{x} \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{u^{2}}{2}\right) du$$
continuous in x .

$$\mathbb{P}\left(-\frac{7}{2} \stackrel{?}{\times} \times\right) = \mathbb{L}\left(\frac{3}{2} \stackrel{?}{\times} \times\right)$$

$$\begin{cases}
\gamma & \gamma & \gamma & \gamma & \gamma \\
\gamma & \gamma & \gamma & \gamma
\end{cases}$$

$$\left(\begin{array}{cccc}
\gamma & \gamma & \gamma & \gamma \\
\gamma & \gamma & \gamma & \gamma
\end{array} \right) = \left[\begin{array}{cccc}
\gamma & \gamma & \gamma & \gamma \\
\gamma & \gamma & \gamma & \gamma
\end{array} \right]$$

quantifyy close ness of Xi alx

Convergence in probability

A sequence X_n of random variables converges in probability towards the random variable X if for all $\epsilon > 0$,

$$\lim_{n\to\infty}\mathbb{P}\big(|X_n-X|>\epsilon\big)=0.$$

Notation: $X_n \xrightarrow{p} X$, $X_n \xrightarrow{P} X$.

Remark:

 X_n and X need to be defined on the same probability space.

Examples:

• Let
$$X_n = Z + \frac{1}{n}$$
, where $Z \sim \mathcal{N}(0,1)$, then $X_n \xrightarrow{P} Z$.

Proof: Let
$$\forall \epsilon > 0$$
. $\mathbb{P}\left(|X_n - 2| > \epsilon\right) = \mathbb{P}\left(\frac{1}{n} > \epsilon\right) = 0$ if $\frac{1}{n} \neq \epsilon$

• Let
$$X_n = Z + Y_n$$
, where $Z \sim \mathcal{N}(0,1)$, $\mathbb{E}(|Y_n|) = \frac{1}{n}$, then $X_n \stackrel{P}{\to} Z$.

Proof:
$$P((X_- \ge 1 > E)) = P((X_n > E))$$

Merkov
$$(z)$$
 E^{-1} $E(7n) = \frac{1}{nE} \rightarrow 0$ as $n + \infty$.

Prohibility of postwire convergen

Convergence almost surely

A sequence X_n of random variables converges almost surely or almost everywhere or with probability 1 or strongly towards X means that

$$\mathbb{P}\left(\lim_{n\to\infty}X_n=X\right)=\mathbb{P}\left(\omega\in\Omega:\lim_{n\to\infty}X_n(\omega)=X(\omega)
ight)=1.$$

Notation:
$$X_n \xrightarrow{a.s.} X$$
. $X_n \xrightarrow{a.e.} X$ $X_n \xrightarrow{a.e.} X$ $X_n \xrightarrow{a.e.} X$ $X_n \xrightarrow{a.e.} X$

Remark:

 X_n and X need to be defined on the same probability space.

$$C_{n}$$
 and X need to be defined on the same probability space.

 $C_{n} = C_{n} \times C$

TORONTO this makes significant difference from pulntonise animogen.

July 21, 2025

Examples:

• Let $X_n = Z + \frac{1}{n}$, where $Z \sim \mathcal{N}(0,1)$, then $X_n \xrightarrow{a.s.} Z$.

Proof: Pontrise argument is necessary for a.s. convergence.

For any
$$w \in \Omega$$
, $\lim_{n \to \infty} Y_n(w) = \lim_{n \to \infty} (2(w) + \frac{1}{n}) = 2(w) + 0 = 2(w)$

Thus, $p((m \times x_1(w)) = 2(w)) = 1$.

• Let $X_n = Z + Y_n$, where $Z \sim \mathcal{N}(0,1)$, $\mathbb{E}(|Y_n|) = \frac{1}{n}$, do we have $X_n \xrightarrow{a.s.} Z$?

Proof:

UNIVERSITY OF TORONTO

15 / 24

(outre example) D= (0,1), P~ Unof(0,1) Define. $\langle m,n \rangle = \begin{cases} 0 \\ 0 \\ 0 \end{cases}$ P(Ymn -1) = m and E | Ym, n |= n m incrases. For each M it moves from left to right. That mens m, m = (m, m (les) does not Sine Ymin is not conveying to O everywhere, X n(w) + 2(w) every where.

Use pth mount to gnaints by the close ness of xxx

Convergence in L^p

A sequence $\{X_n\}$ of random variables converges in L_p to a random variable X, $p \geq 1$, if

$$\lim_{n\to\infty} \mathbb{E}|X_n - X|^p = 0 \quad \text{(in } \quad |X_n - X||_p = 0$$

Notation: $X_n \xrightarrow{L^p} X$.

Remark:

 X_n and X need to be defined on the same probability space.

Examples:

• Let $X_n = Z + \frac{1}{n}$, where $Z \sim \mathcal{N}(0,1)$, then $X_n \xrightarrow{L^p} Z$.

Proof:
$$\mathbb{E} |Y_n-2|^p = \mathbb{E} \frac{1}{n^p} = \frac{1}{n^p} \to 0$$
 as $n \to \infty$

• Let
$$X_n = Z + Y_n$$
, where $Z \sim \mathcal{N}(0,1)$, $\mathbb{E}(|Y_n|^p) = \frac{1}{n}$, then $X_n \xrightarrow{L^p} Z$.

Proof:

IP norm is Indeed a norm hom 121

Recall: A random variable
$$X \in L^p$$
 if $||X||_{L^p} = (E|X|^p)^{1/p} < \infty$. $X_n \to X$ in L^p if $\lim_{n\to\infty} ||X_n - X||_{L^p} = 0$

Monotonicity of L^p Convergence

If q > p > 0, L^q convergence implies L^p convergence

 $(\mathbb{E}(X_n-X_n^p)^{n/p} \leq (\mathbb{E}(X_n-X_n^2)^{n/2})^{n/p}$

This, Xn LP X.

Recall: X_n converges to X in probability if for any $\epsilon > 0$ $\lim_{n \to \infty} P(|X_n - X| > \epsilon) = 0$.

L^p convergence implies Convergence in Probability

If $X_n \to X$ in L^p , then $X_n \to X$ in probability.

$$\mathbb{P}\left(|X_n-X|>\varepsilon\right)=\mathbb{P}\left(|X_n-X|^p>\varepsilon^p\right)$$

since Xn > Xinl

Recall: X_n converges to X in probability if for any $\epsilon > 0$ $\lim_{n \to \infty} P(|X_n - X| > \epsilon) = 0$.

a.s. Convergence implies Convergence in Probability

If $X_n \to X$ almost surely, then $X_n \to X$ in probability.

Proof:

20 / 24

Recall: X_n converges to X in distribution if for any continuity point x of $P(X \le x)$, $\lim_{n\to\infty} P(X_n \le x) = P(X \le x)$ holds.

Convergence in Probability implies Convergence in Distribution

If $X_n \to X$ in probability, then $X_n \to X$ in distribution.

Proof: Omitted

Relationship between convergences (on complete probability space):

Figure: relationship between convergences

Highlights:

• Almost sure convergence implies convergence in probability:

$$X_n \xrightarrow{\text{a.s.}} X \Rightarrow X_n \xrightarrow{P} X;$$

• Convergence in probability implies convergence in distribution:

$$X_n \xrightarrow{P} X \Rightarrow X_n \xrightarrow{d} X;$$

• If X_n converges in distribution to a constant c, then X_n converges in probability to c:

$$X_n \xrightarrow{d} c \Rightarrow X_n \xrightarrow{P} c$$
, provided c is a constant.

Problem Set

Problem 1: Prove that on a complete probability space, if $X_n \xrightarrow{L^p} X$, then $X_n \xrightarrow{P} X$. (Hint: use Markov's inequality)

Problem 2: Let X_1, \dots, X_n be i.i.d. random variables with Bernoulli(p) distribution, and $X \sim Bernoulli(p)$ is defined on the same probability space, independent with X_i 's. Does X_n converge in probability to X?

Problem 3: Give an example where X_n converges in distribution to X, but not in probability.

