Statistical Sciences # DoSS Summer Bootcamp Probability Module 7 Ichiro Hashimoto University of Toronto July 21, 2025 ### Recap #### Learnt in last module: - Covariance - ▷ Covariance as an inner product - ▷ Correlation - ▷ Cauchy-Schwarz inequality - ▶ Uncorrelatedness and Independence - Concentration - ▶ Markov's inequality - ▷ Chebyshev's inequality - ▷ Chernoff bounds ### **Outline** - Stochastic convergence - ▷ Convergence in distribution - ▷ Convergence in probability - ▷ Convergence almost surely - ▷ Convergence in L^p - ▷ Relationship between convergences ### **Recall: Convergence** ### Convergence of a sequence of numbers A sequence a_1, a_2, \cdots converges to a limit a if $$\lim_{n\to\infty}a_n=a.$$ That is, for any $\epsilon > 0$, there exists an $N(\epsilon)$ such that $$|a_n-a|<\epsilon, \quad \forall n>N(\epsilon).$$ #### **Recall: Convergence** ### Convergence of a sequence of numbers A sequence a_1, a_2, \cdots converges to a limit a if $$\lim_{n\to\infty}a_n=a.$$ That is, for any $\epsilon > 0$, there exists an $N(\epsilon)$ such that $$|a_n-a|<\epsilon, \forall n>N(\epsilon).$$ **Example:** $$a_n = \frac{1}{n}$$, $\forall \epsilon > 0$, take $N(\epsilon) = \lceil \frac{1}{\epsilon} \rceil$, then for $n > N(\epsilon)$, $$|a_n-0|=a_n$$ $\epsilon, \lim_{n\to\infty}a_n=0.$ - Capture the property of a series as $n \to \infty$; - The limit is something where the series concentrate for large n; - $|a_n a|$ quantifies the closeness of the series and the limit. Observation: closeness of random variables ### Sample mean of i.i.d. random variables For i.i.d.) random variables $$X_i, i=1,\cdots,n$$ with $\mathbb{E}(X_i)=\mu$, $Var(X_i)=\sigma^2$, then for the sample mean $\bar{X}=\frac{1}{n}\sum_{i=1}^n X_i$, $$\mathbb{E}(ar{X}) = \mu, \quad \mathit{Var}(ar{X}) = rac{\sigma^2}{n}.$$ Proof: $$E(\bar{x}) = E(\frac{1}{n}\sum_{i=1}^{n}\chi_{i}) = \frac{1}{n}\sum_{i=1}^{n}E\chi_{i} = \frac{1}{n}$$. $$V_{cr}(\bar{x}) = \mathbb{E}(\bar{x} - \mu)^{2} = \mathbb{E}\left(\frac{1}{n}\sum_{i=1}^{n}K_{i} - \mu\right)^{2}$$ $$= \mathbb{E}\left(\frac{1}{n}\sum_{i=1}^{n}(X_{i} - \mu)\right)^{2}$$ $$= \frac{1}{n^2} \underbrace{\mathbb{E} \left[\left(\frac{1}{2} - n \right)^2 + \frac{1}{n^2} \underbrace{\mathbb{E} \left[\left(\frac{1}{2} - n \right) \left(\frac{1}{2} - n \right) \right]}_{C(1)} \underbrace{\mathbb{E} \left[\left(\frac{1}{2} - n \right) \left(\frac{1}{2} - n \right) \right]}_{C(1)} \underbrace{\mathbb{E} \left[\left(\frac{1}{2} - n \right) \left(\frac{1}{2} - n \right) \right]}_{C(1)} \underbrace{\mathbb{E} \left[\left(\frac{1}{2} - n \right) \left(\frac{1}{2} - n \right) \right]}_{C(1)} \underbrace{\mathbb{E} \left[\left(\frac{1}{2} - n \right) \left(\frac{1}{2} - n \right) \right]}_{C(1)} \underbrace{\mathbb{E} \left[\left(\frac{1}{2} - n \right) \left(\frac{1}{2} - n \right) \right]}_{C(1)} \underbrace{\mathbb{E} \left[\left(\frac{1}{2} - n \right) \left(\frac{1}{2} - n \right) \right]}_{C(1)} \underbrace{\mathbb{E} \left[\left(\frac{1}{2} - n \right) \left(\frac{1}{2} - n \right) \right]}_{C(1)} \underbrace{\mathbb{E} \left[\left(\frac{1}{2} - n \right) \left(\frac{1}{2} - n \right) \right]}_{C(1)} \underbrace{\mathbb{E} \left[\left(\frac{1}{2} - n \right) \left(\frac{1}{2} - n \right) \right]}_{C(1)} \underbrace{\mathbb{E} \left[\left(\frac{1}{2} - n \right) \left(\frac{1}{2} - n \right) \right]}_{C(1)} \underbrace{\mathbb{E} \left[\left(\frac{1}{2} - n \right) \left(\frac{1}{2} - n \right) \right]}_{C(1)} \underbrace{\mathbb{E} \left[\left(\frac{1}{2} - n \right) \left(\frac{1}{2} - n \right) \right]}_{C(1)} \underbrace{\mathbb{E} \left[\left(\frac{1}{2} - n \right) \left(\frac{1}{2} - n \right) \right]}_{C(1)} \underbrace{\mathbb{E} \left[\left(\frac{1}{2} - n \right) \left(\frac{1}{2} - n \right) \right]}_{C(1)} \underbrace{\mathbb{E} \left[\left(\frac{1}{2} - n \right) \left(\frac{1}{2} - n \right) \right]}_{C(1)} \underbrace{\mathbb{E} \left[\left(\frac{1}{2} - n \right) \left(\frac{1}{2} - n \right) \right]}_{C(1)} \underbrace{\mathbb{E} \left[\left(\frac{1}{2} - n \right) \left(\frac{1}{2} - n \right) \right]}_{C(1)} \underbrace{\mathbb{E} \left[\left(\frac{1}{2} - n \right) \left(\frac{1}{2} - n \right) \right]}_{C(1)} \underbrace{\mathbb{E} \left[\left(\frac{1}{2} - n \right) \left(\frac{1}{2} - n \right) \right]}_{C(1)} \underbrace{\mathbb{E} \left[\left(\frac{1}{2} - n \right) \left(\frac{1}{2} - n \right) \right]}_{C(1)} \underbrace{\mathbb{E} \left[\left(\frac{1}{2} - n \right) \left(\frac{1}{2} - n \right) \right]}_{C(1)} \underbrace{\mathbb{E} \left[\left(\frac{1}{2} - n \right) \left(\frac{1}{2} - n \right) \right]}_{C(1)} \underbrace{\mathbb{E} \left[\left(\frac{1}{2} - n \right) \left(\frac{1}{2} - n \right) \right]}_{C(1)} \underbrace{\mathbb{E} \left[\left(\frac{1}{2} - n \right) \left(\frac{1}{2} - n \right) \right]}_{C(1)} \underbrace{\mathbb{E} \left[\left(\frac{1}{2} - n \right) \left(\frac{1}{2} - n \right) \right]}_{C(1)} \underbrace{\mathbb{E} \left[\left(\frac{1}{2} - n \right) \left(\frac{1}{2} - n \right) \right]}_{C(1)} \underbrace{\mathbb{E} \left[\left(\frac{1}{2} - n \right) \left(\frac{1}{2} - n \right) \right]}_{C(1)} \underbrace{\mathbb{E} \left[\left(\frac{1}{2} - n \right) \left(\frac{1}{2} - n \right) \right]}_{C(1)} \underbrace{\mathbb{E} \left[\left(\frac{1}{2} - n \right) \left(\frac{1}{2} - n \right) \right]}_{C(1)} \underbrace{\mathbb{E} \left[\left(\frac{1}{2} - n \right) \left(\frac{1}{2} - n \right) \right]}_{C(1)} \underbrace{\mathbb{E} \left[\left(\frac{1}{2} - n \right) \left(\frac{1}{2} - n \right) \right]}_{C(1)} \underbrace{\mathbb{E} \left[\left(\frac{1}{2} - n \right) \left(\frac{1}{2} - n \right) \right]}_{C(1)} \underbrace{\mathbb{E} \left[\left(\frac{1}{2} - n \right) \left(\frac{1}{2} - n \right) \right]}_{C(1)} \underbrace{\mathbb{E} \left[\left(\frac{1}{2} - n \right) \left(\frac{1}{2} - n \right) \right]}_{C$$ $$= \frac{1}{n^2} \cdot n\sigma^2 + \sigma = \frac{\sigma^2}{m}.$$ #### **Example:** Further suppose X_i , $i=1,\cdots,n$ i.i.d. with distribution $\mathcal{N}(\mu,\sigma^2)$, then $\bar{X}\sim\mathcal{N}(\mu,\frac{\sigma^2}{n})$, so we can draw the probability density plot of \bar{X} . #### **Example:** Further suppose X_i , $i=1,\cdots,n$ i.i.d. with distribution $\mathcal{N}(\mu,\sigma^2)$, then $\bar{X}\sim\mathcal{N}(\mu(\sigma^2))$, so we can draw the probability density plot of \bar{X} . Figure: Probability density curve of sample mean of normal distribution Vorree gets smaller us on increases #### Intuition: - Series of numbers $a_n \Rightarrow \text{Series of random variables } X_n$; - Limit $a \Rightarrow \text{Limit } X$; - How to quantify the closeness? $(|X_n X|?)$ #### Intuition: - Series of numbers $a_n \Rightarrow Series of random variables <math>X_n$; - Limit $a \Rightarrow \text{Limit } X$; - How to quantify the closeness? $(|X_n X|?)$ ### Pointwise convergence / Sure convergence Suppose random variables X_n and X are defined over the same probability space, then we say X_n converges to X pointwise if $$\lim_{n\to\infty}X_n(\omega)=X(\omega),\ \forall\omega\in\Omega.$$ #### Intuition: - Series of numbers $a_n \Rightarrow Series of random variables <math>X_n$; - Limit $a \Rightarrow \text{Limit } X$; - How to quantify the closeness? $(|X_n X|?)$ ### Pointwise convergence / Sure convergence Suppose random variables X_n and X are defined over the same probability space, then we say X_n converges to X pointwise if $$\lim_{n\to\infty} X_n(\omega) = X(\omega), \ \forall \omega \in \Omega.$$ #### Remark: Incorporate probability measure in some sense. #### Alternatives of describing the closeness: - Utilize CDF: $F_{X_n}(x) F_X(x)$; - Utilize probability of an event: $\mathbb{P}(|X_n X| > \epsilon)$; - Utilize the probability over all ω : $\mathbb{P}(\lim_{n\to\infty} X_n(\omega) = X(\omega))$; - Utilize mean/moments: $\mathbb{E}|X_n X|^p$. Use CDF to qualify the closeness of ### Convergence in distribution A sequence X_1, X_2, \cdots of real-valued random variables is said to converge in distribution, or converge weakly to a random variable X if $$\lim_{n\to\infty}F_n(x)=F(x),$$ for every number $x \in \mathbb{R}$ at which $F(\cdot)$ is continuous. Here, $F_n(\cdot)$ and $F(\cdot)$ are the cumulative distribution functions of the random variables X_n and X, respectively. #### **Notation:** $$X_n \xrightarrow{d} X$$, $X_n \xrightarrow{\mathcal{D}} X$, $X_n \Rightarrow X$. #### Convergence in distribution A sequence X_1, X_2, \cdots of real-valued random variables is said to converge in distribution, or converge weakly to a random variable X if $$\lim_{n\to\infty}F_n(x)=F(x),$$ for every number $x \in \mathbb{R}$ at which $F(\cdot)$ is continuous. Here, $F_n(\cdot)$ and $F(\cdot)$ are the cumulative distribution functions of the random variables X_n and X_n respectively. #### **Notation:** $$X_n \stackrel{d}{\to} X$$, $X_n \stackrel{\mathcal{D}}{\to} X$, $X_n \Rightarrow X$. #### Remark: X_n and X do not need to be defined on the same probability space. #### **Example:** Let $X_n = Z + \frac{1}{n}$, where $Z \sim \mathcal{N}(0,1)$, then • $$X_n \xrightarrow{d} Z$$, $X_n \xrightarrow{can}$ can convey to multiple random normals at the same time. • $X_n \xrightarrow{d} -Z$, $X_n \xrightarrow{d} -Z$ both are $X_n \xrightarrow{d} -Z$ • $$X_n \xrightarrow{d} -Z_1$$ Here, $Z = -2$ both are $\sim \mathcal{M}_{0,1}$ • $$X_n \stackrel{d}{\to} Y$$, $Y \sim \mathcal{N}(0,1)$. A new random morroller which would be defined on **Proof:** $$\mathbb{P}\left(X^{2} \leq X\right) = \mathbb{P}\left(3 \leq X - \frac{1}{2}\right)$$ on a different probehility space. due to continuity I. I is continuous since. N(OII) is a continuous distributions or in other words, there exists density. $$\overline{\psi}(x) = \int_{-\infty}^{x} \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{u^{2}}{2}\right) du$$ continuous in x . $$\mathbb{P}\left(-\frac{7}{2} \stackrel{?}{\times} \times\right) = \mathbb{L}\left(\frac{3}{2} \stackrel{?}{\times} \times\right)$$ $$\begin{cases} \gamma & \gamma & \gamma & \gamma & \gamma \\ \gamma & \gamma & \gamma & \gamma \end{cases}$$ $$\left(\begin{array}{cccc} \gamma & \gamma & \gamma & \gamma \\ \gamma & \gamma & \gamma & \gamma \end{array} \right) = \left[\begin{array}{cccc} \gamma & \gamma & \gamma & \gamma \\ \gamma & \gamma & \gamma & \gamma \end{array} \right]$$ quantifyy close ness of Xi alx ### Convergence in probability A sequence X_n of random variables converges in probability towards the random variable X if for all $\epsilon > 0$, $$\lim_{n\to\infty}\mathbb{P}\big(|X_n-X|>\epsilon\big)=0.$$ **Notation:** $X_n \xrightarrow{p} X$, $X_n \xrightarrow{P} X$. #### Remark: X_n and X need to be defined on the same probability space. ### **Examples:** • Let $$X_n = Z + \frac{1}{n}$$, where $Z \sim \mathcal{N}(0,1)$, then $X_n \xrightarrow{P} Z$. Proof: Let $$\forall \epsilon > 0$$. $\mathbb{P}\left(|X_n - 2| > \epsilon\right) = \mathbb{P}\left(\frac{1}{n} > \epsilon\right) = 0$ if $\frac{1}{n} \neq \epsilon$ • Let $$X_n = Z + Y_n$$, where $Z \sim \mathcal{N}(0,1)$, $\mathbb{E}(|Y_n|) = \frac{1}{n}$, then $X_n \stackrel{P}{\to} Z$. Proof: $$P((X_- \ge 1 > E)) = P((X_n > E))$$ Merkov $$(z)$$ E^{-1} $E(7n) = \frac{1}{nE} \rightarrow 0$ as $n + \infty$. Prohibility of postwire convergen Convergence almost surely A sequence X_n of random variables converges almost surely or almost everywhere or with probability 1 or strongly towards X means that $$\mathbb{P}\left(\lim_{n\to\infty}X_n=X\right)=\mathbb{P}\left(\omega\in\Omega:\lim_{n\to\infty}X_n(\omega)=X(\omega) ight)=1.$$ Notation: $$X_n \xrightarrow{a.s.} X$$. $X_n \xrightarrow{a.e.} X$ $X_n \xrightarrow{a.e.} X$ $X_n \xrightarrow{a.e.} X$ $X_n \xrightarrow{a.e.} X$ Remark: X_n and X need to be defined on the same probability space. $$C_{n}$$ and X need to be defined on the same probability space. $C_{n} = C_{n} \times C$ TORONTO this makes significant difference from pulntonise animogen. July 21, 2025 ### **Examples:** • Let $X_n = Z + \frac{1}{n}$, where $Z \sim \mathcal{N}(0,1)$, then $X_n \xrightarrow{a.s.} Z$. Proof: Pontrise argument is necessary for a.s. convergence. For any $$w \in \Omega$$, $\lim_{n \to \infty} Y_n(w) = \lim_{n \to \infty} (2(w) + \frac{1}{n}) = 2(w) + 0 = 2(w)$ Thus, $p((m \times x_1(w)) = 2(w)) = 1$. • Let $X_n = Z + Y_n$, where $Z \sim \mathcal{N}(0,1)$, $\mathbb{E}(|Y_n|) = \frac{1}{n}$, do we have $X_n \xrightarrow{a.s.} Z$? **Proof:** UNIVERSITY OF TORONTO 15 / 24 (outre example) D= (0,1), P~ Unof(0,1) Define. $\langle m,n \rangle = \begin{cases} 0 \\ 0 \\ 0 \end{cases}$ P(Ymn -1) = m and E | Ym, n |= n m incrases. For each M it moves from left to right. That mens m, m = (m, m (les) does not Sine Ymin is not conveying to O everywhere, X n(w) + 2(w) every where. Use pth mount to gnaints by the close ness of xxx ### Convergence in L^p A sequence $\{X_n\}$ of random variables converges in L_p to a random variable X, $p \geq 1$, if $$\lim_{n\to\infty} \mathbb{E}|X_n - X|^p = 0 \quad \text{(in } \quad |X_n - X||_p = 0$$ **Notation:** $X_n \xrightarrow{L^p} X$. #### Remark: X_n and X need to be defined on the same probability space. ### **Examples:** • Let $X_n = Z + \frac{1}{n}$, where $Z \sim \mathcal{N}(0,1)$, then $X_n \xrightarrow{L^p} Z$. Proof: $$\mathbb{E} |Y_n-2|^p = \mathbb{E} \frac{1}{n^p} = \frac{1}{n^p} \to 0$$ as $n \to \infty$ • Let $$X_n = Z + Y_n$$, where $Z \sim \mathcal{N}(0,1)$, $\mathbb{E}(|Y_n|^p) = \frac{1}{n}$, then $X_n \xrightarrow{L^p} Z$. **Proof:** IP norm is Indeed a norm hom 121 **Recall:** A random variable $$X \in L^p$$ if $||X||_{L^p} = (E|X|^p)^{1/p} < \infty$. $X_n \to X$ in L^p if $\lim_{n\to\infty} ||X_n - X||_{L^p} = 0$ ### Monotonicity of L^p Convergence If q > p > 0, L^q convergence implies L^p convergence $(\mathbb{E}(X_n-X_n^p)^{n/p} \leq (\mathbb{E}(X_n-X_n^2)^{n/2})^{n/p}$ This, Xn LP X. **Recall:** X_n converges to X in probability if for any $\epsilon > 0$ $\lim_{n \to \infty} P(|X_n - X| > \epsilon) = 0$. ### L^p convergence implies Convergence in Probability If $X_n \to X$ in L^p , then $X_n \to X$ in probability. $$\mathbb{P}\left(|X_n-X|>\varepsilon\right)=\mathbb{P}\left(|X_n-X|^p>\varepsilon^p\right)$$ since Xn > Xinl **Recall:** X_n converges to X in probability if for any $\epsilon > 0$ $\lim_{n \to \infty} P(|X_n - X| > \epsilon) = 0$. ### a.s. Convergence implies Convergence in Probability If $X_n \to X$ almost surely, then $X_n \to X$ in probability. **Proof:** 20 / 24 **Recall:** X_n converges to X in distribution if for any continuity point x of $P(X \le x)$, $\lim_{n\to\infty} P(X_n \le x) = P(X \le x)$ holds. ### Convergence in Probability implies Convergence in Distribution If $X_n \to X$ in probability, then $X_n \to X$ in distribution. **Proof: Omitted** Relationship between convergences (on complete probability space): Figure: relationship between convergences #### **Highlights:** • Almost sure convergence implies convergence in probability: $$X_n \xrightarrow{\text{a.s.}} X \Rightarrow X_n \xrightarrow{P} X;$$ • Convergence in probability implies convergence in distribution: $$X_n \xrightarrow{P} X \Rightarrow X_n \xrightarrow{d} X;$$ • If X_n converges in distribution to a constant c, then X_n converges in probability to c: $$X_n \xrightarrow{d} c \Rightarrow X_n \xrightarrow{P} c$$, provided c is a constant. ### **Problem Set** **Problem 1:** Prove that on a complete probability space, if $X_n \xrightarrow{L^p} X$, then $X_n \xrightarrow{P} X$. (Hint: use Markov's inequality) **Problem 2:** Let X_1, \dots, X_n be i.i.d. random variables with Bernoulli(p) distribution, and $X \sim Bernoulli(p)$ is defined on the same probability space, independent with X_i 's. Does X_n converge in probability to X? **Problem 3:** Give an example where X_n converges in distribution to X, but not in probability.