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Recap

Learnt in last module:

• Covariance

ω Covariance as an inner product

ω Correlation

ω Cauchy-Schwarz inequality

ω Uncorrelatedness and Independence

• Concentration

ω Markov’s inequality

ω Chebyshev’s inequality

ω Cherno! bounds
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Outline

• Stochastic convergence

ω Convergence in distribution

ω Convergence in probability

ω Convergence almost surely

ω Convergence in Lp

ω Relationship between convergences
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Stochastic Convergence

Recall: Convergence

Convergence of a sequence of numbers

A sequence a1, a2, · · · converges to a limit a if

lim
n→↑

an = a.

That is, for any ε > 0, there exists an N(ε) such that

|an → a| < ε, ↑n > N(ε).

Example: an =
1
n , ↑ε > 0, take N(ε) = ↓1ω ↔, then for n > N(ε),

|an → 0| = an < ε, lim
n→↑

an = 0.
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Stochastic Convergence
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• Capture the property of a series as

n ↗ ↘;

• The limit is something where the

series concentrate for large n;

• |an → a| quantifies the closeness of the

series and the limit.
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Stochastic Convergence

Observation: closeness of random variables

Sample mean of i.i.d. random variables

For i.i.d. random variables Xi , i = 1, · · · , n with E(Xi ) = µ, Var(Xi ) = ϑ2
, then for the

sample mean X̄ =
1
n

∑n
i=1 Xi ,

E(X̄ ) = µ, Var(X̄ ) =
ϑ2

n
.

Proof:
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Stochastic Convergence
Example:
Further suppose Xi , i = 1, · · · , n i.i.d. with distribution N (µ,ω2

), then X̄ → N (µ, ω
2

n ),

so we can draw the probability density plot of X̄ .

Figure: Probability density curve of sample mean of normal distribution
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Stochastic Convergence
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Figure: Probability density curve of sample mean of normal distribution
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Stochastic Convergence

Intuition:

• Series of numbers an ↑ Series of random variables Xn;

• Limit a ↑ Limit X ;

• How to quantify the closeness? (|Xn ↓ X |?)

Pointwise convergence / Sure convergence

Suppose random variables Xn and X are defined over the same probability space, then

we say Xn converges to X pointwise if

lim
n→↑

Xn(ε) = X (ε), ↔ε ↗ !.

Remark:
Incorporate probability measure in some sense.
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Stochastic Convergence
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Stochastic Convergence

Alternatives of describing the closeness:

• Utilize CDF: FXn(x)↓ FX (x);

• Utilize probability of an event: P(|Xn ↓ X | > ϑ);

• Utilize the probability over all ε: P(limn→↑ Xn(ε) = X (ε));

• Utilize mean/moments: E|Xn ↓ X |p.
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Stochastic Convergence

Convergence in distribution

A sequence X1,X2, · · · of real-valued random variables is said to converge in

distribution, or converge weakly to a random variable X if

lim
n→↑

Fn(x) = F (x),

for every number x ↗ R at which F (·) is continuous. Here, Fn(·) and F (·) are the

cumulative distribution functions of the random variables Xn and X , respectively.

Notation:
Xn

d↓↘ X , Xn
D↓↘ X , Xn ↑ X .

Remark:
Xn and X do not need to be defined on the same probability space.
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Stochastic Convergence

Example:
Let Xn = Z +

1
n , where Z → N (0, 1), then

• Xn
d↓↘ Z ,

• Xn
d↓↘ ↓Z ,

• Xn
d↓↘ Y , Y → N (0, 1).

Proof:
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Stochastic Convergence

Convergence in probability

A sequence Xn of random variables converges in probability towards the random

variable X if for all ω > 0,

lim
n→↑

P
(
|Xn → X | > ω

)
= 0.

Notation: Xn
p→↑ X , Xn

P→↑ X .

Remark:
Xn and X need to be defined on the same probability space.
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Stochastic Convergence
Examples:

• Let Xn = Z +
1
n , where Z ↓ N (0, 1), then Xn

P→↑ Z .

Proof:

• Let Xn = Z + Yn, where Z ↓ N (0, 1), E(|Yn|) = 1
n , then Xn

P→↑ Z .

Proof:
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Stochastic convergence

Convergence almost surely

A sequence Xn of random variables converges almost surely or almost everywhere or

with probability 1 or strongly towards X means that

P
(
lim
n→↑

Xn = X
)
= P

(
ε ↔ ! : lim

n→↑
Xn(ε) = X (ε)

)
= 1.

Notation: Xn
a.s.→→↑ X .

Remark:
Xn and X need to be defined on the same probability space.
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Stochastic convergence
Examples:

• Let Xn = Z +
1
n , where Z ↓ N (0, 1), then Xn

a.s.→→↑ Z .

Proof:

• Let Xn = Z + Yn, where Z ↓ N (0, 1), E(|Yn|) = 1
n , do we have Xn

a.s.→→↑ Z?

Proof:
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Stochastic convergence

Convergence in Lp

A sequence {Xn} of random variables converges in Lp to a random variable X , p → 1, if

lim
n→↑

E|Xn ↑ X |p = 0

Notation: Xn
Lp↑↓ X .

Remark:
Xn and X need to be defined on the same probability space.
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Stochastic convergence
Examples:

• Let Xn = Z +
1
n , where Z ↔ N (0, 1), then Xn

Lp↑↓ Z .

Proof:

• Let Xn = Z + Yn, where Z ↔ N (0, 1), E(|Yn|p) = 1
n , then Xn

Lp↑↓ Z .

Proof:
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Stochastic convergence
Recall: A random variable X ↗ Lp if ↘X↘Lp = (E |X |p)1/p < ≃.

Xn ↓ X in Lp if limn→↑ ↘Xn ↑ X↘Lp = 0

Monotonicity of Lp Convergence

If q > p > 0, Lq convergence implies Lp convergence

Proof:
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Stochastic convergence

Recall: Xn converges to X in probability if for any ω > 0 limn→↑ P(|Xn →X | > ω) = 0.

Lp convergence implies Convergence in Probability

If Xn ↑ X in Lp, then Xn ↑ X in probability.

Proof:
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Stochastic convergence

Recall: Xn converges to X in probability if for any ω > 0 limn→↑ P(|Xn →X | > ω) = 0.

a.s. Convergence implies Convergence in Probability

If Xn ↑ X almost surely, then Xn ↑ X in probability.

Proof:
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Stochastic convergence
Recall: Xn converges to X in distribution if for any continuity point x of P(X ↓ x),
limn→↑ P(Xn ↓ x) = P(X ↓ x) holds.

Convergence in Probability implies Convergence in Distribution

If Xn ↑ X in probability, then Xn ↑ X in distribution.

Proof: Omitted
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Stochastic convergence

Relationship between convergences (on complete probability space):

Figure: relationship between convergences
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Stochastic convergence

Highlights:

• Almost sure convergence implies convergence in probability:

Xn
a.s.→→↑ X ↔ Xn

P→↑ X ;

• Convergence in probability implies convergence in distribution:

Xn
P→↑ X ↔ Xn

d→↑ X ;

• If Xn converges in distribution to a constant c , then Xn converges in probability to

c :

Xn
d→↑ c ↔ Xn

P→↑ c , provided c is a constant.
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Problem Set

Problem 1: Prove that on a complete probability space, if Xn
Lp→↑ X , then Xn

P→↑ X .

(Hint: use Markov’s inequality)

Problem 2: Let X1, · · · ,Xn be i.i.d. random variables with Bernoulli(p) distribution,
and X ↗ Bernoulli(p) is defined on the same probability space, independent with Xi ’s.

Does Xn converge in probability to X?

Problem 3: Give an example where Xn converges in distribution to X , but not in

probability.
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