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Recap

Learnt in last module:

® Stochastic convergence

> Convergence in distribution
Convergence in probability
Convergence almost surely
Convergence in L

>
>
>
> Relationship between convergences
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Outline

® Convergence of functions of random variables
> Slutsky's theorem
> Continuous mapping theorem

® | aws of large numbers

> WLLN
> SLLN
> Glivenko-Cantelli theorem

e Central limit theorem
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Convergence of functions of random variables

Recall: Stochastic convergence If X, — X, Y, — Y in some sense, how is the
limiting property of f(X,, Y,)?
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Convergence of functions of random variables

Recall: Stochastic convergence If X, — X, Y, — Y in some sense, how is the
limiting property of f(X,, Y,)?

Convergence of functions of random variables (a.s.)

Suppose the probability space is complete, if X, == X, Y, == Y, then for any real
numbers a, b,

e 2X, + bY, 223 aX + bY;
e X,Y, 235 XY.

Remark:

e Still require all the random variables to be defined on the same probability space
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Convergence of functions of random variables

Convergence of functions of random variables (probability)

Suppose the probability space is complete, if X, L X, Y, L Y, then for any real
numbers a, b,

e aX,+ bY, B aX + bY:
e XY, 2 xv.

Remark:

® Still require all the random variables to be defined on the same probability space
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Convergence of functions of random variables

Convergence of functions of random variables (LP)

Suppose the probability space is complete, if X, LN X, Yn L, Y, then for any real
numbers a, b,

e aX, + bY, s aX + bY:

Remark:

e Still require all the random variables to be defined on the same probability space
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Convergence of functions of random variables

Remark: Convergence in distribution is different.

Slutsky's theorem

If X, 9, X and Y, L (c is a constant), then
e X,+Y, 9 x + c;
o X,Y, L cX:
° X,/Ys q, X/c, where ¢ # 0.
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Convergence of functions of random variables

Remark: Convergence in distribution is different.

Slutsky's theorem

If X, 9, X and Y, L (c is a constant), then
e X,+Y, 9 x + c;
o X,Y, L cX:
© X,/Ys L X/c, where ¢ # 0.

Remark:

® The theorem remains valid if we replace all the convergence in distribution with
convergence in probability.
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Convergence of functions of random variables

. P . .
Remark: The requirement that Y, — ¢ (c is a constant) is necessary.
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Convergence of functions of random variables

. P . .
Remark: The requirement that Y, — ¢ (c is a constant) is necessary.

Examples:
X, ~ N(0,1), Y, = —Xn, then

o X, % Z~N(0,1), Y, L Z ~ N(0,1);

* X, + Y, i> 0;
o X,Y,=-X2% (1)
o X,/Y,=—1.
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Convergence of functions of random variables

Continuous mapping theorem

Let X,, X be random variables, if g(-) : R — R satisfies P(X € Dg) = 0, then
S X IHX = gX) 2 (),
* XX = g(Xa) S e(X);
* X B X = g(Xn) S g(X);

where D, is the set of discontinuity points of g(-).
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Convergence of functions of random variables

Continuous mapping theorem

Let X,, X be random variables, if g(-) : R — R satisfies P(X € Dg) = 0, then
* X, I X = g(Xn) X g(X)
* XX = g(Xa) S e(X);
e X, L X = gX)) D g(X);

where D, is the set of discontinuity points of g(-).

Remark:
® If g(-) is continuous, then ...

e If X is a continuous random variable, and D, only include countably many points,
then ...
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Law of large numbers

Weak Law of Large Numbers (WLLN)

If X1, Xo,---, X, are i.i.d. random variables, u = E(| Xj|) < oo, then

_ i Xi LN

n

X -

Remark:
A more easy-to-prove version is the L? weak law, where an additional assumption

Var(X;) < oo is required.
Sketch of the proof:
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Law of large numbers

A generalization of the theorem: triangular array

Triangular array

A triangular array of random variables is a collection {X; x }1<k<n-

X11

)

X2,1, X2
X3,1,X32,X33

Xn,la Xn,27 T aXn,n
Remark: We can consider the limiting property of the row sum S,.
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Law of Large Numbers

L2 weak law for triangular array
,n. Let

Suppose { X, «} is a triangular array, n=1,2,--- [k =1,2,
Sn=3h_1 Xok: pn = E(Sp), if 62/b2 — 0, where 02 = Var(S,) and b, is a sequence

of positive real numbers, then
Sn—fn P
by, )

Remark:
The L2 weak law for i.i.d. random variables is a special case of that for triangular array.
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Law of large numbers

Proof:
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Law of large numbers

Proof:

Remark:
A more generalized version incorporates truncation, then the second-moment
constraint is relieved.
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Law of large numbers

Strong Law of Large Numbers (SLLN)

Let X1, X2, -+ be an i.i.d. sequence satisfying E(X;) = u and E(|Xj|) < oo, then
X — X a.s.
== — M

Remark: The proof needs Borel-Cantelli lemma.
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Law of large numbers

Strong Law of Large Numbers (SLLN)

Let X1, X2, -+ be an i.i.d. sequence satisfying E(X;) = u and E(|Xj|) < oo, then
X — X a.s.
== — M

Remark: The proof needs Borel-Cantelli lemma.

Glivenko-Cantelli theorem

Let X;,i=1,---,ni.id. with distribution function F(-), and let
Fa(x) = 1577 1 1(X; < x), then as n — oo,

sup |F(x) — Fa(x)] — 0, a.s.
xeR
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Law of large numbers

Proof:
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Limit Theorems and Counterexamples
Recall: For the law of large numbers to hold, the assumption E|X| < oo is crucial.

Law of Large Numbers fail for infinite mean i.i.d. random variables

If X1Xa,... arei.id. to X with E|X;| = oo, then for S, = X1 + -+ + X,,
P(lim,—00 Sn/n € (—00,00)) = 0.

Proof: Omitted

&
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Central Limit Theorem

What is the limiting distribution of the sample mean?

Suppose Xi,--- X, is a sequence of i.i.d. random variables with E(X;) = ,
Var(X;) = 02 < oo, then

VX —p) g, N(0,1).

g

Remark:
® The proof involves characteristic function.

® A more generalized CLT is referred to as “Lindeberg CLT".
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Central Limit Theorem

Example:
Suppose X; ~ Bernoulli(p), i.i.d., consider Z, = M, then by CLT,

v/ np(1—p)
Z, ~ N(0,1) asymptotically.
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Monotone Convergence Theorem

Monotone Convergence Theorem

If X, > cand X, "X, then EX,, " EX

Usage:
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Dominate Convergence Theorem

Dominated Convergence Theorem
If X, — X a.s. and |X,| < Y as. for all nand Y is integrable, then EX, — EX

Usage:
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Delta Method

More about CLT: Delta method

Suppose X, are i.i.d. random variables with EX, = 0, VAR(X,) = 0> > 0. Let g be a
measurable function that is differentiable at 0 with g’(0) # 0. Then

n

Vi (g (Z2%— g(0)) ) - NO.%/(07) weakl.

Proof under stronger assumption: Here, we suppose g is continuously
differentiable on R. If you are interested in a general proof refer to Robert Keener's
Theoretical Statistics.
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Problem Set

Problem 1: Prove that on a complete probability space, if X, == X, Y, == Y, then
Xo+ Yo 2 X+ Y.

Problem 2: Prove that on a complete probability space, if X, P, X, Y, Lt Y, then
Xo+ Yo Do X+ Y.

Problem 3: A bank teller serves customers standing in the queue one by one. Suppose
that the service time X; for customer i has mean E(X;) = 2 (minutes) and

Var(X;) = 1. We assume that service times for different bank customers are
independent. Let Y be the total time the bank teller spends serving 50 customers.
Find P(90 < Y < 110).
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