

Statistical Sciences

DoSS Summer Bootcamp Probability Module 9

Ichiro Hashimoto

University of Toronto

July 24, 2025

Outline

Counterexamples

Recall: A random variable $X \in L^p$ if $||X||_{L^p} = (E|X|^p)^{1/p} < \infty$.

$$X_n \to X$$
 in L^p if $\lim_{n \to \infty} \|X_n - X\|_{L^p} = 0$

Monotonicity of L^p Convergence

If q > p > 0, L^q convergence implies L^p convergence

Counterexample to the Converse:

Recall: X_n converges to X in probability if for any $\epsilon > 0$ $\lim_{n \to \infty} P(|X_n - X| > \epsilon) = 0$.

L^p convergence implies Convergence in Probability

If $X_n \to X$ in L^p , then $X_n \to X$ in probability.

Counterexample to the Converse:

Recall: X_n converges to X in probability if for any $\epsilon > 0$ $\lim_{n \to \infty} P(|X_n - X| > \epsilon) = 0$.

a.s. Convergence implies Convergence in Probability

If $X_n \to X$ almost surely, then $X_n \to X$ in probability.

Counterexample to the Converse:

Recall: X_n converges to X in distribution if for any continuity point x of $P(X \le x)$, $\lim_{n \to \infty} P(X_n \le x) = P(X \le x)$ holds.

Convergence in Probability implies Convergence in Distribution

If $X_n \to X$ in probability, then $X_n \to X$ in distribution.

Counterexample to the Converse:

Recall: X_n converges to X in distribution if for any continuity point x of $P(X \le x)$, $\lim_{n\to\infty} P(X_n \le x) = P(X \le x)$ holds.

Convergence in Probability implies Convergence in Distribution

If $X_n \to X$ in probability, then $X_n \to X$ in distribution.

Special case when the Converse holds:

Monotone Convergence Theorem

If $X_n \geq 0$ and $X_n \nearrow X$, then $EX_n \nearrow EX$

Counterexample when X_n is not lower bounded:

Dominated Convergence Theorem

If $X_n \to X$ a.s. and $|X_n| \le Y$ a.s. for all n and Y is integrable, then $EX_n \to EX$

Counterexample when X_n is not dominated by an integrable random variable:

